An algorithm for three-dimensional dynamic vehicle-track-structure interaction (VTSI) analysis is described in this paper. The algorithm is described in terms of bridges and high-speed trains, but more generally applies to multibody systems coupled to deformable structures by time-varying kinematic constraints. Coupling is accomplished by a kinematic constraint/Lagrange multiplier approach, resulting in a system of index-3 Differential Algebraic Equations (DAE). Three main new concepts are developed. (i) A corotational approach is used to represent the vehicle (train) dynamics. Reference coordinate frames are fitted to the undeformed geometry of the bridge. While the displacements of the train can be large, deformations are taken to be small within these frames, resulting in linear (time-varying) rather than nonlinear dynamics. (ii) If conventional finite elements are used to discretize the track, the curvature is discontinuous across elements (and possibly rotation, too, for curved tracks). This results in spurious numerical oscillations in computed contact forces and accelerations, quantities of key interest in VTSI. A NURBS-based discretization is employed for the track to mitigate such oscillations. (iii) The higher order continuity due to using NURBS allows for alternative techniques for solving the VTSI system. First, enforcing constraints at the acceleration level reduces an index-3 DAE to an index-1 system that can be solved without numerical dissipation. Second, a constraint projection method is proposed to solve an index-3 DAE system without numerical dissipation by correcting wheel velocities and accelerations. Moreover, the modularity of the presented algorithm, resulting from a kinematic constraint/Lagrange multiplier formulation, enables ready integration of this VTSI approach in existing structural analysis and finite element software.
Parameters of differential equations are essential to characterize intrinsic behaviors of dynamic systems. Numerous methods for estimating parameters in dynamic systems are computationally and/or statistically inadequate, especially for complex systems with general-order differential operators, such as motion dynamics. This article presents Green's matching, a computationally tractable and statistically efficient two-step method, which only needs to approximate trajectories in dynamic systems but not their derivatives due to the inverse of differential operators by Green's function. This yields a statistically optimal guarantee for parameter estimation in general-order equations, a feature not shared by existing methods, and provides an efficient framework for broad statistical inferences in complex dynamic systems.
We identify reduced order models (ROM) of forced systems from data using invariant foliations. The forcing can be external, parametric, periodic or quasi-periodic. The process has four steps: 1. identify an approximate invariant torus and the linear dynamics about the torus; 2. identify a globally defined invariant foliation about the torus; 3. identify a local foliation about an invariant manifold that complements the global foliation 4. extract the invariant manifold as the leaf going through the torus and interpret the result. We combine steps 2 and 3, so that we can track the location of the invariant torus and scale the invariance equations appropriately. We highlight some fundamental limitations of invariant manifolds and foliations when fitting them to data, that require further mathematics to resolve.
We present a method for end-to-end learning of Koopman surrogate models for optimal performance in control. In contrast to previous contributions that employ standard reinforcement learning (RL) algorithms, we use a training algorithm that exploits the potential differentiability of environments based on mechanistic simulation models. We evaluate the performance of our method by comparing it to that of other controller type and training algorithm combinations on a literature known eNMPC case study. Our method exhibits superior performance on this problem, thereby constituting a promising avenue towards more capable controllers that employ dynamic surrogate models.
The subject of this work is an adaptive stochastic Galerkin finite element method for parametric or random elliptic partial differential equations, which generates sparse product polynomial expansions with respect to the parametric variables of solutions. For the corresponding spatial approximations, an independently refined finite element mesh is used for each polynomial coefficient. The method relies on multilevel expansions of input random fields and achieves error reduction with uniform rate. In particular, the saturation property for the refinement process is ensured by the algorithm. The results are illustrated by numerical experiments, including cases with random fields of low regularity.
Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.
We consider a geometric programming problem consisting in minimizing a function given by the supremum of finitely many log-Laplace transforms of discrete nonnegative measures on a Euclidean space. Under a coerciveness assumption, we show that a $\varepsilon$-minimizer can be computed in a time that is polynomial in the input size and in $|\log\varepsilon|$. This is obtained by establishing bit-size estimates on approximate minimizers and by applying the ellipsoid method. We also derive polynomial iteration complexity bounds for the interior point method applied to the same class of problems. We deduce that the spectral radius of a partially symmetric, weakly irreducible nonnegative tensor can be approximated within $\varepsilon$ error in poly-time. For strongly irreducible tensors, we also show that the logarithm of the positive eigenvector is poly-time computable. Our results also yield that the the maximum of a nonnegative homogeneous $d$-form in the unit ball with respect to $d$-H\"older norm can be approximated in poly-time. In particular, the spectral radius of uniform weighted hypergraphs and some known upper bounds for the clique number of uniform hypergraphs are poly-time computable.
This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.
Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of $m$ new points, giving rise to $m$ conformal $p$-values. While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function. The results hold for arbitrary exchangeable scores, including adaptive ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.
Accelerated failure time (AFT) models are frequently used for modelling survival data. This approach is attractive as it quantifies the direct relationship between the time until an event occurs and various covariates. It asserts that the failure times experience either acceleration or deceleration through a multiplicative factor when these covariates are present. While existing literature provides numerous methods for fitting AFT models with time-fixed covariates, adapting these approaches to scenarios involving both time-varying covariates and partly interval-censored data remains challenging. In this paper, we introduce a maximum penalised likelihood approach to fit a semiparametric AFT model. This method, designed for survival data with partly interval-censored failure times, accommodates both time-fixed and time-varying covariates. We utilise Gaussian basis functions to construct a smooth approximation of the nonparametric baseline hazard and fit the model via a constrained optimisation approach. To illustrate the effectiveness of our proposed method, we conduct a comprehensive simulation study. We also present an implementation of our approach on a randomised clinical trial dataset on advanced melanoma patients.
The direct parametrisation method for invariant manifold is a model-order reduction technique that can be applied to nonlinear systems described by PDEs and discretised e.g. with a finite element procedure in order to derive efficient reduced-order models (ROMs). In nonlinear vibrations, it has already been applied to autonomous and non-autonomous problems to propose ROMs that can compute backbone and frequency-response curves of structures with geometric nonlinearity. While previous developments used a first-order expansion to cope with the non-autonomous term, this assumption is here relaxed by proposing a different treatment. The key idea is to enlarge the dimension of the parametrising coordinates with additional entries related to the forcing. A new algorithm is derived with this starting assumption and, as a key consequence, the resonance relationships appearing through the homological equations involve multiple occurrences of the forcing frequency, showing that with this new development, ROMs for systems exhibiting a superharmonic resonance, can be derived. The method is implemented and validated on academic test cases involving beams and arches. It is numerically demonstrated that the method generates efficient ROMs for problems involving 3:1 and 2:1 superharmonic resonances, as well as converged results for systems where the first-order truncation on the non-autonomous term showed a clear limitation.