亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, Unmanned Aerial Vehicles (UAVs) have shown impressive performance in many critical applications, such as surveillance, search and rescue operations, environmental monitoring, etc. In many of these applications, the UAVs capture images as well as other sensory data and then send the data processing requests to remote servers. Nevertheless, this approach is not always practical in real-time-based applications due to unstable connections, limited bandwidth, limited energy, and strict end-to-end latency. One promising solution is to divide the inference requests into subtasks that can be distributed among UAVs in a swarm based on the available resources. Moreover, these tasks create intermediate results that need to be transmitted reliably as the swarm moves to cover the area. Our system model deals with real-time requests, aiming to find the optimal transmission power that guarantees higher reliability and low latency. We formulate the Low Latency and High-Reliability (LLHR) distributed inference as an optimization problem, and due to the complexity of the problem, we divide it into three subproblems. In the first subproblem, we find the optimal transmit power of the connected UAVs with guaranteed transmission reliability. The second subproblem aims to find the optimal positions of the UAVs in the grid, while the last subproblem finds the optimal placement of the CNN layers in the available UAVs. We conduct extensive simulations and compare our work to two baseline models demonstrating that our model outperforms the competing models.

相關內容

In this paper we consider online distributed learning problems. Online distributed learning refers to the process of training learning models on distributed data sources. In our setting a set of agents need to cooperatively train a learning model from streaming data. Differently from federated learning, the proposed approach does not rely on a central server but only on peer-to-peer communications among the agents. This approach is often used in scenarios where data cannot be moved to a centralized location due to privacy, security, or cost reasons. In order to overcome the absence of a central server, we propose a distributed algorithm that relies on a quantized, finite-time coordination protocol to aggregate the locally trained models. Furthermore, our algorithm allows for the use of stochastic gradients during local training. Stochastic gradients are computed using a randomly sampled subset of the local training data, which makes the proposed algorithm more efficient and scalable than traditional gradient descent. In our paper, we analyze the performance of the proposed algorithm in terms of the mean distance from the online solution. Finally, we present numerical results for a logistic regression task.

We study the problem of Out-of-Distribution (OOD) detection, that is, detecting whether a learning algorithm's output can be trusted at inference time. While a number of tests for OOD detection have been proposed in prior work, a formal framework for studying this problem is lacking. We propose a definition for the notion of OOD that includes both the input distribution and the learning algorithm, which provides insights for the construction of powerful tests for OOD detection. We propose a multiple hypothesis testing inspired procedure to systematically combine any number of different statistics from the learning algorithm using conformal p-values. We further provide strong guarantees on the probability of incorrectly classifying an in-distribution sample as OOD. In our experiments, we find that threshold-based tests proposed in prior work perform well in specific settings, but not uniformly well across different types of OOD instances. In contrast, our proposed method that combines multiple statistics performs uniformly well across different datasets and neural networks.

We study optimality for the safety-constrained Markov decision process which is the underlying framework for safe reinforcement learning. Specifically, we consider a constrained Markov decision process (with finite states and finite actions) where the goal of the decision maker is to reach a target set while avoiding an unsafe set(s) with certain probabilistic guarantees. Therefore the underlying Markov chain for any control policy will be multichain since by definition there exists a target set and an unsafe set. The decision maker also has to be optimal (with respect to a cost function) while navigating to the target set. This gives rise to a multi-objective optimization problem. We highlight the fact that Bellman's principle of optimality may not hold for constrained Markov decision problems with an underlying multichain structure (as shown by the counterexample due to Haviv. We resolve the counterexample by formulating the aforementioned multi-objective optimization problem as a zero-sum game and thereafter construct an asynchronous value iteration scheme for the Lagrangian (similar to Shapley's algorithm). Finally, we consider the reinforcement learning problem for the same and construct a modified $Q$-learning algorithm for learning the Lagrangian from data. We also provide a lower bound on the number of iterations required for learning the Lagrangian and corresponding error bounds.

In this paper, we investigate the uplink signal detection approaches in the cell-free massive MIMO systems with unmanned aerial vehicles (UAVs) serving as aerial access points (APs). The ground users are equipped with multiple antennas and the ground-to-air propagation channels are subject to correlated Rician fading. To overcome huge signaling overhead in the fully-centralized detection, we propose a two-layer distributed uplink detection scheme, where the uplink signals are first detected in the AP-UAVs by using the minimum mean-squared error (MMSE) detector depending on local channel state information (CSI), and then collected and weighted combined at the CPU-UAV to obtain the refined detection. By using the operator-valued free probability theory, the asymptotic expressions of the combining weights are obtained, which only depend on the statistical CSI and show excellent accuracy. Based on the proposed distributed scheme, we further investigate the impacts of different distributed deployments on the achieved spectral efficiency (SE). Numerical results show that in urban and dense urban environments, it is more beneficial to deploy more AP-UAVs to achieve higher SE. On the other hand, in suburban environment, an optimal ratio between the number of deployed UAVs and the number of antennas per UAV exists to maximize the SE.

Denoising diffusion models have recently emerged as the predominant paradigm for generative modelling. Their extension to Riemannian manifolds has facilitated their application to an array of problems in the natural sciences. Yet, in many practical settings, such manifolds are defined by a set of constraints and are not covered by the existing (Riemannian) diffusion model methodology. Recent work has attempted to address this issue by employing novel noising processes based on logarithmic barrier methods or reflected Brownian motions. However, the associated samplers are computationally burdensome as the complexity of the constraints increases. In this paper, we introduce an alternative simple noising scheme based on Metropolis sampling that affords substantial gains in computational efficiency and empirical performance compared to the earlier samplers. Of independent interest, we prove that this new process corresponds to a valid discretisation of the reflected Brownian motion. We demonstrate the scalability and flexibility of our approach on a range of problem settings with convex and non-convex constraints, including applications from geospatial modelling, robotics and protein design.

The heterogeneous, geographically distributed infrastructure of fog computing poses challenges in data replication, data distribution, and data mobility for fog applications. Fog computing is still missing the necessary abstractions to manage application data, and fog application developers need to re-implement data management for every new piece of software. Proposed solutions are limited to certain application domains, such as the IoT, are not flexible in regard to network topology, or do not provide the means for applications to control the movement of their data. In this paper, we present FReD, a data replication middleware for the fog. FReD serves as a building block for configurable fog data distribution and enables low-latency, high-bandwidth, and privacy-sensitive applications. FReD is a common data access interface across heterogeneous infrastructure and network topologies, provides transparent and controllable data distribution, and can be integrated with applications from different domains. To evaluate our approach, we present a prototype implementation of FReD and show the benefits of developing with FReD using three case studies of fog computing applications.

Artificial intelligence has achieved significant success in handling complex tasks in recent years. This success is due to advances in machine learning algorithms and hardware acceleration. In order to obtain more accurate results and solve more complex problems, algorithms must be trained with more data. This huge amount of data could be time-consuming to process and require a great deal of computation. This solution could be achieved by distributing the data and algorithm across several machines, which is known as distributed machine learning. There has been considerable effort put into distributed machine learning algorithms, and different methods have been proposed so far. In this article, we present a comprehensive summary of the current state-of-the-art in the field through the review of these algorithms. We divide this algorithms in classification and clustering (traditional machine learning), deep learning and deep reinforcement learning groups. Distributed deep learning has gained more attention in recent years and most of studies worked on this algorithms. As a result, most of the articles we discussed here belong to this category. Based on our investigation of algorithms, we highlight limitations that should be addressed in future research.

Entanglement distribution is a key functionality of the Quantum Internet. However, quantum entanglement is very fragile, easily degraded by decoherence, which strictly constraints the time horizon within the distribution has to be completed. This, coupled with the quantum noise irremediably impinging on the channels utilized for entanglement distribution, may imply the need to attempt the distribution process multiple times before the targeted network nodes successfully share the desired entangled state. And there is no guarantee that this is accomplished within the time horizon dictated by the coherence times. As a consequence, in noisy scenarios requiring multiple distribution attempts, it may be convenient to stop the distribution process early. In this paper, we take steps in the direction of knowing when to stop the entanglement distribution by developing a theoretical framework, able to capture the quantum noise effects. Specifically, we first prove that the entanglement distribution process can be modeled as a Markov decision process. Then, we prove that the optimal decision policy exhibits attractive features, which we exploit to reduce the computational complexity. The developed framework provides quantum network designers with flexible tools to optimally engineer the design parameters of the entanglement distribution process.

Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

北京阿比特科技有限公司