亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We tackle the complex problem of detecting and recognising anomalies in surveillance videos at the frame level, utilising only video-level supervision. We introduce the novel method AnomalyCLIP, the first to combine Large Language and Vision (LLV) models, such as CLIP, with multiple instance learning for joint video anomaly detection and classification. Our approach specifically involves manipulating the latent CLIP feature space to identify the normal event subspace, which in turn allows us to effectively learn text-driven directions for abnormal events. When anomalous frames are projected onto these directions, they exhibit a large feature magnitude if they belong to a particular class. We also introduce a computationally efficient Transformer architecture to model short- and long-term temporal dependencies between frames, ultimately producing the final anomaly score and class prediction probabilities. We compare AnomalyCLIP against state-of-the-art methods considering three major anomaly detection benchmarks, i.e. ShanghaiTech, UCF-Crime, and XD-Violence, and empirically show that it outperforms baselines in recognising video anomalies.

相關內容

We introduce the Song Describer dataset (SDD), a new crowdsourced corpus of high-quality audio-caption pairs, designed for the evaluation of music-and-language models. The dataset consists of 1.1k human-written natural language descriptions of 706 music recordings, all publicly accessible and released under Creative Common licenses. To showcase the use of our dataset, we benchmark popular models on three key music-and-language tasks (music captioning, text-to-music generation and music-language retrieval). Our experiments highlight the importance of cross-dataset evaluation and offer insights into how researchers can use SDD to gain a broader understanding of model performance.

Recently, video super resolution (VSR) has become a very impactful task in the area of Computer Vision due to its various applications. In this paper, we propose Recurrent Back-Projection Generative Adversarial Network (RBPGAN) for VSR in an attempt to generate temporally coherent solutions while preserving spatial details. RBPGAN integrates two state-of-the-art models to get the best in both worlds without compromising the accuracy of produced video. The generator of the model is inspired by RBPN system, while the discriminator is inspired by TecoGAN. We also utilize Ping-Pong loss to increase temporal consistency over time. Our contribution together results in a model that outperforms earlier work in terms of temporally consistent details, as we will demonstrate qualitatively and quantitatively using different datasets.

Object detection in remote sensing images relies on a large amount of labeled data for training. However, the increasing number of new categories and class imbalance make exhaustive annotation impractical. Few-shot object detection (FSOD) addresses this issue by leveraging meta-learning on seen base classes and fine-tuning on novel classes with limited labeled samples. Nonetheless, the substantial scale and orientation variations of objects in remote sensing images pose significant challenges to existing few-shot object detection methods. To overcome these challenges, we propose integrating a feature pyramid network and utilizing prototype features to enhance query features, thereby improving existing FSOD methods. We refer to this modified FSOD approach as a Strong Baseline, which has demonstrated significant performance improvements compared to the original baselines. Furthermore, we tackle the issue of spatial misalignment caused by orientation variations between the query and support images by introducing a Transformation-Invariant Network (TINet). TINet ensures geometric invariance and explicitly aligns the features of the query and support branches, resulting in additional performance gains while maintaining the same inference speed as the Strong Baseline. Extensive experiments on three widely used remote sensing object detection datasets, i.e., NWPU VHR-10.v2, DIOR, and HRRSD demonstrated the effectiveness of the proposed method.

We present a novel approach for action recognition in UAV videos. Our formulation is designed to handle occlusion and viewpoint changes caused by the movement of a UAV. We use the concept of mutual information to compute and align the regions corresponding to human action or motion in the temporal domain. This enables our recognition model to learn from the key features associated with the motion. We also propose a novel frame sampling method that uses joint mutual information to acquire the most informative frame sequence in UAV videos. We have integrated our approach with X3D and evaluated the performance on multiple datasets. In practice, we achieve 18.9% improvement in Top-1 accuracy over current state-of-the-art methods on UAV-Human(Li et al., 2021), 7.3% improvement on Drone-Action(Perera et al., 2019), and 7.16% improvement on NEC Drones(Choi et al., 2020).

Recent endeavors in video temporal grounding enforce strong cross-modal interactions through attention mechanisms to overcome the modality gap between video and text query. However, previous works treat all video clips equally regardless of their semantic relevance with the text query in attention modules. In this paper, our goal is to provide clues for query-associated video clips within the crossmodal encoding process. With our Correlation-Guided Detection Transformer~(CG-DETR), we explore the appropriate clip-wise degree of cross-modal interactions and how to exploit such degrees for prediction. First, we design an adaptive cross-attention layer with dummy tokens. Dummy tokens conditioned by text query take a portion of the attention weights, preventing irrelevant video clips from being represented by the text query. Yet, not all word tokens equally inherit the text query's correlation to video clips. Thus, we further guide the cross-attention map by inferring the fine-grained correlation between video clips and words. We enable this by learning a joint embedding space for high-level concepts, i.e., moment and sentence level, and inferring the clip-word correlation. Lastly, we use a moment-adaptive saliency detector to exploit each video clip's degrees of text engagement. We validate the superiority of CG-DETR with the state-of-the-art results on various benchmarks for both moment retrieval and highlight detection. Codes are available at //github.com/wjun0830/CGDETR.

Video post-processing methods can improve the quality of compressed videos at the decoder side. Most of the existing methods need to train corresponding models for compressed videos with different quantization parameters to improve the quality of compressed videos. However, in most cases, the quantization parameters of the decoded video are unknown. This makes existing methods have their limitations in improving video quality. To tackle this problem, this work proposes a diffusion model based post-processing method for compressed videos. The proposed method first estimates the feature vectors of the compressed video and then uses the estimated feature vectors as the prior information for the quality enhancement model to adaptively enhance the quality of compressed video with different quantization parameters. Experimental results show that the quality enhancement results of our proposed method on mixed datasets are superior to existing methods.

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司