亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We apply the FLAME methodology to derive algorithms hand in hand with their proofs of correctness for the computation of the $ L T L^T $ decomposition (with and without pivoting) of a skew-symmetric matrix. The approach yields known as well as new algorithms, presented using the FLAME notation. A number of BLAS-like primitives are exposed at the core of blocked algorithms that can attain high performance. The insights can be easily extended to yield algorithms for computing the $ L T L^T $ decomposition of a symmetric matrix.

相關內容

We consider the time and space required for quantum computers to solve a wide variety of problems involving matrices, many of which have only been analyzed classically in prior work. Our main results show that for a range of linear algebra problems -- including matrix-vector product, matrix inversion, matrix multiplication and powering -- existing classical time-space tradeoffs, several of which are tight for every space bound, also apply to quantum algorithms. For example, for almost all matrices $A$, including the discrete Fourier transform (DFT) matrix, we prove that quantum circuits with at most $T$ input queries and $S$ qubits of memory require $T=\Omega(n^2/S)$ to compute matrix-vector product $Ax$ for $x \in \{0,1\}^n$. We similarly prove that matrix multiplication for $n\times n$ binary matrices requires $T=\Omega(n^3 / \sqrt{S})$. Because many of our lower bounds match deterministic algorithms with the same time and space complexity, we show that quantum computers cannot provide any asymptotic advantage for these problems with any space bound. We obtain matching lower bounds for the stronger notion of quantum cumulative memory complexity -- the sum of the space per layer of a circuit. We also consider Boolean (i.e. AND-OR) matrix multiplication and matrix-vector products, improving the previous quantum time-space tradeoff lower bounds for $n\times n$ Boolean matrix multiplication to $T=\Omega(n^{2.5}/S^{1/3})$ from $T=\Omega(n^{2.5}/S^{1/2})$. Our improved lower bound for Boolean matrix multiplication is based on a new coloring argument that extracts more from the strong direct product theorem used in prior work. Our tight lower bounds for linear algebra problems require adding a new bucketing method to the recording-query technique of Zhandry that lets us apply classical arguments to upper bound the success probability of quantum circuits.

Feature bagging is a well-established ensembling method which aims to reduce prediction variance by combining predictions of many estimators trained on subsets or projections of features. Here, we develop a theory of feature-bagging in noisy least-squares ridge ensembles and simplify the resulting learning curves in the special case of equicorrelated data. Using analytical learning curves, we demonstrate that subsampling shifts the double-descent peak of a linear predictor. This leads us to introduce heterogeneous feature ensembling, with estimators built on varying numbers of feature dimensions, as a computationally efficient method to mitigate double-descent. Then, we compare the performance of a feature-subsampling ensemble to a single linear predictor, describing a trade-off between noise amplification due to subsampling and noise reduction due to ensembling. Our qualitative insights carry over to linear classifiers applied to image classification tasks with realistic datasets constructed using a state-of-the-art deep learning feature map.

Existing structural analysis methods may fail to find all hidden constraints for a system of differential-algebraic equations with parameters if the system is structurally unamenable for certain values of the parameters. In this paper, for polynomial systems of differential-algebraic equations, numerical methods are given to solve such cases using numerical real algebraic geometry. First, we propose an embedding method that for a given real analytic system constructs an equivalent system with a full-rank Jacobian matrix. Secondly, we introduce a witness point method, which can help to detect degeneration on all components of constraints of such systems. Thirdly, the two methods above lead to a numerical global structural analysis method for structurally unamenable differential-algebraic equations on all components of constraints.

Physics-informed machine learning (PIML) has emerged as a promising alternative to conventional numerical methods for solving partial differential equations (PDEs). PIML models are increasingly built via deep neural networks (NNs) whose architecture and training process are designed such that the network satisfies the PDE system. While such PIML models have substantially advanced over the past few years, their performance is still very sensitive to the NN's architecture and loss function. Motivated by this limitation, we introduce kernel-weighted Corrective Residuals (CoRes) to integrate the strengths of kernel methods and deep NNs for solving nonlinear PDE systems. To achieve this integration, we design a modular and robust framework which consistently outperforms competing methods in solving a broad range of benchmark problems. This performance improvement has a theoretical justification and is particularly attractive since we simplify the training process while negligibly increasing the inference costs. Additionally, our studies on solving multiple PDEs indicate that kernel-weighted CoRes considerably decrease the sensitivity of NNs to factors such as random initialization, architecture type, and choice of optimizer. We believe our findings have the potential to spark a renewed interest in leveraging kernel methods for solving PDEs.

Pioneering efforts have verified the effectiveness of the diffusion models in exploring the informative uncertainty for recommendation. Considering the difference between recommendation and image synthesis tasks, existing methods have undertaken tailored refinements to the diffusion and reverse process. However, these approaches typically use the highest-score item in corpus for user interest prediction, leading to the ignorance of the user's generalized preference contained within other items, thereby remaining constrained by the data sparsity issue. To address this issue, this paper presents a novel Plug-in Diffusion Model for Recommendation (PDRec) framework, which employs the diffusion model as a flexible plugin to jointly take full advantage of the diffusion-generating user preferences on all items. Specifically, PDRec first infers the users' dynamic preferences on all items via a time-interval diffusion model and proposes a Historical Behavior Reweighting (HBR) mechanism to identify the high-quality behaviors and suppress noisy behaviors. In addition to the observed items, PDRec proposes a Diffusion-based Positive Augmentation (DPA) strategy to leverage the top-ranked unobserved items as the potential positive samples, bringing in informative and diverse soft signals to alleviate data sparsity. To alleviate the false negative sampling issue, PDRec employs Noise-free Negative Sampling (NNS) to select stable negative samples for ensuring effective model optimization. Extensive experiments and analyses on four datasets have verified the superiority of the proposed PDRec over the state-of-the-art baselines and showcased the universality of PDRec as a flexible plugin for commonly-used sequential encoders in different recommendation scenarios. The code is available in //github.com/hulkima/PDRec.

We develop a distributed Block Chebyshev-Davidson algorithm to solve large-scale leading eigenvalue problems for spectral analysis in spectral clustering. First, the efficiency of the Chebyshev-Davidson algorithm relies on the prior knowledge of the eigenvalue spectrum, which could be expensive to estimate. This issue can be lessened by the analytic spectrum estimation of the Laplacian or normalized Laplacian matrices in spectral clustering, making the proposed algorithm very efficient for spectral clustering. Second, to make the proposed algorithm capable of analyzing big data, a distributed and parallel version has been developed with attractive scalability. The speedup by parallel computing is approximately equivalent to $\sqrt{p}$, where $p$ denotes the number of processes. {Numerical results will be provided to demonstrate its efficiency in spectral clustering and scalability advantage over existing eigensolvers used for spectral clustering in parallel computing environments.}

sEMG pattern recognition algorithms have been explored extensively in decoding movement intent, yet are known to be vulnerable to changing recording conditions, exhibiting significant drops in performance across subjects, and even across sessions. Multi-channel surface EMG, also referred to as high-density sEMG (HD-sEMG) systems, have been used to improve performance with the information collected through the use of additional electrodes. However, a lack of robustness is ever present due to limited datasets and the difficulties in addressing sources of variability, such as electrode placement. In this study, we propose training on a collection of input channel subsets and augmenting our training distribution with data from different electrode locations, simultaneously targeting electrode shift and reducing input dimensionality. Our method increases robustness against electrode shift and results in significantly higher intersession performance across subjects and classification algorithms.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司