3D object detection from multi-view images has drawn much attention over the past few years. Existing methods mainly establish 3D representations from multi-view images and adopt a dense detection head for object detection, or employ object queries distributed in 3D space to localize objects. In this paper, we design Multi-View 2D Objects guided 3D Object Detector (MV2D), which can lift any 2D object detector to multi-view 3D object detection. Since 2D detections can provide valuable priors for object existence, MV2D exploits 2D detectors to generate object queries conditioned on the rich image semantics. These dynamically generated queries help MV2D to recall objects in the field of view and show a strong capability of localizing 3D objects. For the generated queries, we design a sparse cross attention module to force them to focus on the features of specific objects, which suppresses interference from noises. The evaluation results on the nuScenes dataset demonstrate the dynamic object queries and sparse feature aggregation can promote 3D detection capability. MV2D also exhibits a state-of-the-art performance among existing methods. We hope MV2D can serve as a new baseline for future research. Code is available at \url{//github.com/tusen-ai/MV2D}.
In recent times, there has been a notable surge in multimodal approaches that decorates raw LiDAR point clouds with camera-derived features to improve object detection performance. However, we found that these methods still grapple with the inherent sparsity of LiDAR point cloud data, primarily because fewer points are enriched with camera-derived features for sparsely distributed objects. We present an innovative approach that involves the generation of virtual LiDAR points using camera images and enhancing these virtual points with semantic labels obtained from image-based segmentation networks to tackle this issue and facilitate the detection of sparsely distributed objects, particularly those that are occluded or distant. Furthermore, we integrate a distance aware data augmentation (DADA) technique to enhance the models capability to recognize these sparsely distributed objects by generating specialized training samples. Our approach offers a versatile solution that can be seamlessly integrated into various 3D frameworks and 2D semantic segmentation methods, resulting in significantly improved overall detection accuracy. Evaluation on the KITTI and nuScenes datasets demonstrates substantial enhancements in both 3D and birds eye view (BEV) detection benchmarks
We introduce CoTracker, a transformer-based model that tracks dense points in a frame jointly across a video sequence. This differs from most existing state-of-the-art approaches that track points independently, ignoring their correlation. We show that joint tracking results in a significantly higher tracking accuracy and robustness. We also provide several technical innovations, including the concept of virtual tracks, which allows CoTracker to track 70k points jointly and simultaneously. Furthermore, CoTracker operates causally on short windows (hence, it is suitable for online tasks), but is trained by unrolling the windows across longer video sequences, which enables and significantly improves long-term tracking. We demonstrate qualitatively impressive tracking results, where points can be tracked for a long time even when they are occluded or leave the field of view. Quantitatively, CoTracker outperforms all recent trackers on standard benchmarks, often by a substantial margin.
Unsupervised depth completion methods are trained by minimizing sparse depth and image reconstruction error. Block artifacts from resampling, intensity saturation, and occlusions are amongst the many undesirable by-products of common data augmentation schemes that affect image reconstruction quality, and thus the training signal. Hence, typical augmentations on images viewed as essential to training pipelines in other vision tasks have seen limited use beyond small image intensity changes and flipping. The sparse depth modality have seen even less as intensity transformations alter the scale of the 3D scene, and geometric transformations may decimate the sparse points during resampling. We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth completion. This is achieved by reversing, or ``undo"-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame. This enables computing the reconstruction losses using the original images and sparse depth maps, eliminating the pitfalls of naive loss computation on the augmented inputs. This simple yet effective strategy allows us to scale up augmentations to boost performance. We demonstrate our method on indoor (VOID) and outdoor (KITTI) datasets where we improve upon three existing methods by an average of 11.75% across both datasets.
The reconstruction of indoor scenes from multi-view RGB images is challenging due to the coexistence of flat and texture-less regions alongside delicate and fine-grained regions. Recent methods leverage neural radiance fields aided by predicted surface normal priors to recover the scene geometry. These methods excel in producing complete and smooth results for floor and wall areas. However, they struggle to capture complex surfaces with high-frequency structures due to the inadequate neural representation and the inaccurately predicted normal priors. This work aims to reconstruct high-fidelity surfaces with fine-grained details by addressing the above limitations. To improve the capacity of the implicit representation, we propose a hybrid architecture to represent low-frequency and high-frequency regions separately. To enhance the normal priors, we introduce a simple yet effective image sharpening and denoising technique, coupled with a network that estimates the pixel-wise uncertainty of the predicted surface normal vectors. Identifying such uncertainty can prevent our model from being misled by unreliable surface normal supervisions that hinder the accurate reconstruction of intricate geometries. Experiments on the benchmark datasets show that our method outperforms existing methods in terms of reconstruction quality. Furthermore, the proposed method also generalizes well to real-world indoor scenarios captured by our hand-held mobile phones. Our code is publicly available at: //github.com/yec22/Fine-Grained-Indoor-Recon.
Completion problems, of recovering points from a set of observed coordinates, are abundant in applications to image reconstruction, phylogenetics, and data science. We consider a completion problem coming from algebraic statistics, of determining those observed probabilities which can be finitely completed to a probability distribution in a given log--linear model. These observed probabilities either have a unique completion or two completions to the log--linear model depending on the set of observed coordinates.
The issue of generative pretraining for vision models has persisted as a long-standing conundrum. At present, the text-to-image (T2I) diffusion model demonstrates remarkable proficiency in generating high-definition images matching textual inputs, a feat made possible through its pre-training on large-scale image-text pairs. This leads to a natural inquiry: can diffusion models be utilized to tackle visual perception tasks? In this paper, we propose a simple yet effective scheme to harness a diffusion model for visual perception tasks. Our key insight is to introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception. The effect of meta prompts are two-fold. First, as a direct replacement of the text embeddings in the T2I models, it can activate task-relevant features during feature extraction. Second, it will be used to re-arrange the extracted features to ensures that the model focuses on the most pertinent features for the task on hand. Additionally, we design a recurrent refinement training strategy that fully leverages the property of diffusion models, thereby yielding stronger visual features. Extensive experiments across various benchmarks validate the effectiveness of our approach. Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes. Concurrently, the proposed method attains results comparable to the current state-of-the-art in semantic segmentation on ADE20K and pose estimation on COCO datasets, further exemplifying its robustness and versatility.
Existing open-vocabulary image segmentation methods require a fine-tuning step on mask annotations and/or image-text datasets. Mask labels are labor-intensive, which limits the number of categories in segmentation datasets. As a result, the open-vocabulary capacity of pre-trained VLMs is severely reduced after fine-tuning. However, without fine-tuning, VLMs trained under weak image-text supervision tend to make suboptimal mask predictions when there are text queries referring to non-existing concepts in the image. To alleviate these issues, we introduce a novel recurrent framework that progressively filters out irrelevant texts and enhances mask quality without training efforts. The recurrent unit is a two-stage segmenter built upon a VLM with frozen weights. Thus, our model retains the VLM's broad vocabulary space and strengthens its segmentation capability. Experimental results show that our method outperforms not only the training-free counterparts, but also those fine-tuned with millions of additional data samples, and sets new state-of-the-art records for both zero-shot semantic and referring image segmentation tasks. Specifically, we improve the current record by 28.8, 16.0, and 6.9 mIoU on Pascal VOC, COCO Object, and Pascal Context.
Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.