亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a novel physical-layer method labelled as Multi-Modal Concurrent Transmission (MMCT) for efficient transmission of multiple data streams with different reliability-latency performance requirements. The MMCT arranges data from multiple streams within a same physical-layer transport block wherein stream-specific modulation and coding scheme (MCS) selection is combined with joint mapping of modulated codewords to Multiple-Input Multiple-Output spatial layers and frequency resources. Mapping to spatial-frequency resources with higher Signal-to-Noise Ratios (SNRs) provides the required performance boost for the more demanding streams. In tactile internet applications, wherein haptic feedback/actuation and audio-video streams flow in parallel, the method provides significant SNR and spectral efficiency enhancements compared to conventional 3GPP New Radio (NR) transmission methods.

相關內容

Perturbation-based explanation methods such as LIME and SHAP are commonly applied to text classification. This work focuses on their extension to generative language models. To address the challenges of text as output and long text inputs, we propose a general framework called MExGen that can be instantiated with different attribution algorithms. To handle text output, we introduce the notion of scalarizers for mapping text to real numbers and investigate multiple possibilities. To handle long inputs, we take a multi-level approach, proceeding from coarser levels of granularity to finer ones, and focus on algorithms with linear scaling in model queries. We conduct a systematic evaluation, both automated and human, of perturbation-based attribution methods for summarization and context-grounded question answering. The results show that our framework can provide more locally faithful explanations of generated outputs.

Generative models such as denoising diffusion models are quickly advancing their ability to approximate highly complex data distributions. They are also increasingly leveraged in scientific machine learning, where samples from the implied data distribution are expected to adhere to specific governing equations. We present a framework to inform denoising diffusion models on underlying constraints on such generated samples during model training. Our approach improves the alignment of the generated samples with the imposed constraints and significantly outperforms existing methods without affecting inference speed. Additionally, our findings suggest that incorporating such constraints during training provides a natural regularization against overfitting. Our framework is easy to implement and versatile in its applicability for imposing equality and inequality constraints as well as auxiliary optimization objectives.

Deep learning-based techniques have proven effective in polyp segmentation tasks when provided with sufficient pixel-wise labeled data. However, the high cost of manual annotation has created a bottleneck for model generalization. To minimize annotation costs, we propose a deep active learning framework for annotation-efficient polyp segmentation. In practice, we measure the uncertainty of each sample by examining the similarity between features masked by the prediction map of the polyp and the background area. Since the segmentation model tends to perform weak in samples with indistinguishable features of foreground and background areas, uncertainty sampling facilitates the fitting of under-learning data. Furthermore, clustering image-level features weighted by uncertainty identify samples that are both uncertain and representative. To enhance the selectivity of the active selection strategy, we propose a novel unsupervised feature discrepancy learning mechanism. The selection strategy and feature optimization work in tandem to achieve optimal performance with a limited annotation budget. Extensive experimental results have demonstrated that our proposed method achieved state-of-the-art performance compared to other competitors on both a public dataset and a large-scale in-house dataset.

We introduce the Multi-Robot Connected Fermat Spiral (MCFS), a novel algorithmic framework for Multi-Robot Coverage Path Planning (MCPP) that adapts Connected Fermat Spiral (CFS) from the computer graphics community to multi-robot coordination for the first time. MCFS uniquely enables the orchestration of multiple robots to generate coverage paths that contour around arbitrarily shaped obstacles, a feature that is notably lacking in traditional methods. Our framework not only enhances area coverage and optimizes task performance, particularly in terms of makespan, for workspaces rich in irregular obstacles but also addresses the challenges of path continuity and curvature critical for non-holonomic robots by generating smooth paths without decomposing the workspace. MCFS solves MCPP by constructing a graph of isolines and transforming MCPP into a combinatorial optimization problem, aiming to minimize the makespan while covering all vertices. Our contributions include developing a unified CFS version for scalable and adaptable MCPP, extending it to MCPP with novel optimization techniques for cost reduction and path continuity and smoothness, and demonstrating through extensive experiments that MCFS outperforms existing MCPP methods in makespan, path curvature, coverage ratio, and overlapping ratio. Our research marks a significant step in MCPP, showcasing the fusion of computer graphics and automated planning principles to advance the capabilities of multi-robot systems in complex environments. Our code is available at //github.com/reso1/MCFS.

We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end. We apply our framework to the dense visual alignment problem. Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode. We show results on eight datasets, all of which demonstrate our method successfully aligns complex data and discovers dense correspondences. GANgealing significantly outperforms past self-supervised correspondence algorithms and performs on-par with (and sometimes exceeds) state-of-the-art supervised correspondence algorithms on several datasets -- without making use of any correspondence supervision or data augmentation and despite being trained exclusively on GAN-generated data. For precise correspondence, we improve upon state-of-the-art supervised methods by as much as $3\times$. We show applications of our method for augmented reality, image editing and automated pre-processing of image datasets for downstream GAN training.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

Many recent state-of-the-art recommender systems such as D-ATT, TransNet and DeepCoNN exploit reviews for representation learning. This paper proposes a new neural architecture for recommendation with reviews. Our model operates on a multi-hierarchical paradigm and is based on the intuition that not all reviews are created equal, i.e., only a select few are important. The importance, however, should be dynamically inferred depending on the current target. To this end, we propose a review-by-review pointer-based learning scheme that extracts important reviews, subsequently matching them in a word-by-word fashion. This enables not only the most informative reviews to be utilized for prediction but also a deeper word-level interaction. Our pointer-based method operates with a novel gumbel-softmax based pointer mechanism that enables the incorporation of discrete vectors within differentiable neural architectures. Our pointer mechanism is co-attentive in nature, learning pointers which are co-dependent on user-item relationships. Finally, we propose a multi-pointer learning scheme that learns to combine multiple views of interactions between user and item. Overall, we demonstrate the effectiveness of our proposed model via extensive experiments on \textbf{24} benchmark datasets from Amazon and Yelp. Empirical results show that our approach significantly outperforms existing state-of-the-art, with up to 19% and 71% relative improvement when compared to TransNet and DeepCoNN respectively. We study the behavior of our multi-pointer learning mechanism, shedding light on evidence aggregation patterns in review-based recommender systems.

北京阿比特科技有限公司