亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate the performance of the cross-domain iterative detection (CDID) framework with orthogonal time frequency space (OTFS) modulation, where two distinct CDID algorithms are presented. The proposed schemes estimate/detect the information symbols iteratively across the frequency domain and the delay-Doppler (DD) domain via passing either the a posteriori or extrinsic information. Building upon this framework, we investigate the error performance by considering the bias evolution and state evolution. Furthermore, we discuss their error performance in convergence and the DD domain error state lower bounds in each iteration. Specifically, we demonstrate that in convergence, the ultimate error performance of the CDID passing the a posteriori information can be characterized by two potential convergence points. In contrast, the ultimate error performance of the CDID passing the extrinsic information has only one convergence point, which, interestingly, aligns with the matched filter bound. Our numerical results confirm our analytical findings and unveil the promising error performance achieved by the proposed designs.

相關內容

In this work, we address unconstrained finite-sum optimization problems, with particular focus on instances originating in large scale deep learning scenarios. Our main interest lies in the exploration of the relationship between recent line search approaches for stochastic optimization in the overparametrized regime and momentum directions. First, we point out that combining these two elements with computational benefits is not straightforward. To this aim, we propose a solution based on mini-batch persistency. We then introduce an algorithmic framework that exploits a mix of data persistency, conjugate-gradient type rules for the definition of the momentum parameter and stochastic line searches. The resulting algorithm is empirically shown to outperform other popular methods from the literature, obtaining state-of-the-art results in both convex and nonconvex large scale training problems.

This paper aims to construct optimal quaternary additive codes with non-integer dimensions. Firstly, we propose combinatorial constructions of quaternary additive constant-weight codes, alongside additive generalized anticode construction. Subsequently, we propose generalized Construction X, which facilitates the construction of non-integer dimensional optimal additive codes from linear codes. Then, we construct ten classes of optimal quaternary non-integer dimensional additive codes through these two methods. As an application, we also determine the optimal additive $[n,3.5,n-t]_4$ codes for all $t$ with variable $n$, except for $t=6,7,12$.

In this paper, we introduce Harpocrates, a compiler plugin and a framework pair for Scala that binds the privacy policies to the data during data creation in form of oblivious membranes. Harpocrates eliminates raw data for a policy protected type from the application, ensuring it can only exist in protected form and centralizes the policy checking to the policy declaration site, making the privacy logic easy to maintain and verify. Instead of approaching privacy from an information flow verification perspective, Harpocrates allow the data to flow freely throughout the application, inside the policy membranes but enforces the policies when the data is tried to be accessed, mutated, declassified or passed through the application boundary. The centralization of the policies allow the maintainers to change the enforced logic simply by updating a single function while keeping the rest of the application oblivious to the change. Especially in a setting where the data definition is shared by multiple applications, the publisher can update the policies without requiring the dependent applications to make any changes beyond updating the dependency version.

Motivated by real-world applications such as rental and cloud computing services, we investigate pricing for reusable resources. We consider a system where a single resource with a fixed number of identical copies serves customers with heterogeneous willingness-to-pay (WTP), and the usage duration distribution is general. Optimal dynamic policies are computationally intractable when usage durations are not memoryless, so existing literature has focused on static pricing, which incurs a steady-state performance loss of ${O}(\sqrt{c})$ compared to optimality when supply and demand scale with $c$. We propose a class of dynamic "stock-dependent" policies that 1) are computationally tractable and 2) can attain a steady-state performance loss of $o(\sqrt{c})$. We give parametric bounds based on the local shape of the reward function at the optimal fluid admission probability and show that the performance loss of stock-dependent policies can be as low as ${O}((\log{c})^2)$. We characterize the tight performance loss for stock-dependent policies and show that they can in fact be achieved by a simple two-price policy that sets a higher price when the stock is below some threshold and a lower price otherwise. We extend our results to settings with multiple resources and multiple customer classes. Finally, we demonstrate this "minimally dynamic" class of two-price policies performs well numerically, even in non-asymptotic settings, suggesting that a little dynamicity can go a long way.

In this paper, we propose an innovative approach to thoroughly explore dataset features that introduce bias in downstream machine-learning tasks. Depending on the data format, we use different techniques to map instances into a similarity feature space. Our method's ability to adjust the resolution of pairwise similarity provides clear insights into the relationship between the dataset classification complexity and model fairness. Experimental results confirm the promising applicability of the similarity network in promoting fair models. Moreover, leveraging our methodology not only seems promising in providing a fair downstream task such as classification, it also performs well in imputation and augmentation of the dataset satisfying the fairness criteria such as demographic parity and imbalanced classes.

In this paper, we aim to address a significant challenge in the field of missing data imputation: identifying and leveraging the interdependencies among features to enhance missing data imputation for tabular data. We introduce a novel framework named the Bipartite and Complete Directed Graph Neural Network (BCGNN). Within BCGNN, observations and features are differentiated as two distinct node types, and the values of observed features are converted into attributed edges linking them. The bipartite segment of our framework inductively learns embedding representations for nodes, efficiently utilizing the comprehensive information encapsulated in the attributed edges. In parallel, the complete directed graph segment adeptly outlines and communicates the complex interdependencies among features. When compared to contemporary leading imputation methodologies, BCGNN consistently outperforms them, achieving a noteworthy average reduction of 15% in mean absolute error for feature imputation tasks under different missing mechanisms. Our extensive experimental investigation confirms that an in-depth grasp of the interdependence structure substantially enhances the model's feature embedding ability. We also highlight the model's superior performance in label prediction tasks involving missing data, and its formidable ability to generalize to unseen data points.

Algorithms that use derivatives of governing equations have accelerated rigid robot simulations and improved their accuracy, enabling the modeling of complex, real-world capabilities. However, extending these methods to soft and hybrid soft-rigid robots is significantly more challenging due to the complexities in modeling continuous deformations inherent in soft bodies. A considerable number of soft robots and the deformable links of hybrid robots can be effectively modeled as slender rods. The Geometric Variable Strain (GVS) model, which employs the screw theory and the strain parameterization of the Cosserat rod, extends the rod theory to model hybrid soft-rigid robots within the same mathematical framework. Using the Recursive Newton-Euler Algorithm, we developed the analytical derivatives of the governing equations of the GVS model. These derivatives facilitate the implicit integration of dynamics and provide the analytical Jacobian of the statics residue, ensuring fast and accurate computations. We applied these derivatives to the mechanical simulations of six common robotic systems: a soft cable-driven manipulator, a hybrid serial robot, a fin-ray finger, a hybrid parallel robot, a contact scenario, and an underwater hybrid mobile robot. Simulation results demonstrate substantial improvements in computational efficiency, with speed-ups of up to three orders of magnitude. We validate the model by comparing simulations done with and without analytical derivatives. Beyond static and dynamic simulations, the techniques discussed in this paper hold the potential to revolutionize the analysis, control, and optimization of hybrid robotic systems for real-world applications.

In this paper, a novel optimal control-based baseline function is presented for the policy gradient method in deep reinforcement learning (RL). The baseline is obtained by computing the value function of an optimal control problem, which is formed to be closely associated with the RL task. In contrast to the traditional baseline aimed at variance reduction of policy gradient estimates, our work utilizes the optimal control value function to introduce a novel aspect to the role of baseline -- providing guided exploration during policy learning. This aspect is less discussed in prior works. We validate our baseline on robot learning tasks, showing its effectiveness in guided exploration, particularly in sparse reward environments.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司