亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diffusion models have emerged as the \emph{de-facto} technique for image generation, yet they entail significant computational overhead, hindering the technique's broader application in the research community. We propose a prior-based denoising training framework, the first to incorporate the pre-train and fine-tune paradigm into the diffusion model training process, which substantially improves training efficiency and shows potential in facilitating various downstream tasks. Our approach centers on masking a high proportion (e.g., up to 90\%) of the input image and employing masked denoising score matching to denoise the visible areas, thereby guiding the diffusion model to learn more salient features from training data as prior knowledge. By utilizing masked learning in a pre-training stage, we efficiently train the ViT-based diffusion model on CelebA-HQ $256 \times 256$ in the pixel space, achieving a 4x acceleration and enhancing the quality of generated images compared to denoising diffusion probabilistic model (DDPM). Moreover, our masked pre-training technique can be universally applied to various diffusion models that directly generate images in the pixel space, aiding in the learning of pre-trained models with superior generalizability. For instance, a diffusion model pre-trained on VGGFace2 attains a 46\% quality improvement through fine-tuning with merely 10\% data from a different distribution. Moreover, our method shows the potential to serve as a training paradigm for enhancing the privacy protection capabilities of diffusion models. Our code is available at \url{//github.com/jiachenlei/maskdm}.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 類別 · 比特 · 線性的 · 優化器 ·
2023 年 9 月 22 日

We show that there is a language in $\mathsf{S}_2\mathsf{E}/_1$ (symmetric exponential time with one bit of advice) with circuit complexity at least $2^n/n$. In particular, the above also implies the same near-maximum circuit lower bounds for the classes $\Sigma_2\mathsf{E}$, $(\Sigma_2\mathsf{E}\cap\Pi_2\mathsf{E})/_1$, and $\mathsf{ZPE}^{\mathsf{NP}}/_1$. Previously, only "half-exponential" circuit lower bounds for these complexity classes were known, and the smallest complexity class known to require exponential circuit complexity was $\Delta_3\mathsf{E} = \mathsf{E}^{\Sigma_2\mathsf{P}}$ (Miltersen, Vinodchandran, and Watanabe COCOON'99). Our circuit lower bounds are corollaries of an unconditional zero-error pseudodeterministic algorithm with an $\mathsf{NP}$ oracle and one bit of advice ($\mathsf{FZPP}^{\mathsf{NP}}/_1$) that solves the range avoidance problem infinitely often. This algorithm also implies unconditional infinitely-often pseudodeterministic $\mathsf{FZPP}^{\mathsf{NP}}/_1$ constructions for Ramsey graphs, rigid matrices, two-source extractors, linear codes, and $\mathrm{K}^{\mathrm{poly}}$-random strings with nearly optimal parameters. Our proofs relativize. The two main technical ingredients are (1) Korten's $\mathsf{P}^{\mathsf{NP}}$ reduction from the range avoidance problem to constructing hard truth tables (FOCS'21), which was in turn inspired by a result of Je\v{r}\'abek on provability in Bounded Arithmetic (Ann. Pure Appl. Log. 2004); and (2) the recent iterative win-win paradigm of Chen, Lu, Oliveira, Ren, and Santhanam (FOCS'23).

While image data starts to enjoy the simple-but-effective self-supervised learning scheme built upon masking and self-reconstruction objective thanks to the introduction of tokenization procedure and vision transformer backbone, convolutional neural networks as another important and widely-adopted architecture for image data, though having contrastive-learning techniques to drive the self-supervised learning, still face the difficulty of leveraging such straightforward and general masking operation to benefit their learning process significantly. In this work, we aim to alleviate the burden of including masking operation into the contrastive-learning framework for convolutional neural networks as an extra augmentation method. In addition to the additive but unwanted edges (between masked and unmasked regions) as well as other adverse effects caused by the masking operations for ConvNets, which have been discussed by prior works, we particularly identify the potential problem where for one view in a contrastive sample-pair the randomly-sampled masking regions could be overly concentrated on important/salient objects thus resulting in misleading contrastiveness to the other view. To this end, we propose to explicitly take the saliency constraint into consideration in which the masked regions are more evenly distributed among the foreground and background for realizing the masking-based augmentation. Moreover, we introduce hard negative samples by masking larger regions of salient patches in an input image. Extensive experiments conducted on various datasets, contrastive learning mechanisms, and downstream tasks well verify the efficacy as well as the superior performance of our proposed method with respect to several state-of-the-art baselines.

Connectionist temporal classification (CTC) is commonly adopted for sequence modeling tasks like speech recognition, where it is necessary to preserve order between the input and target sequences. However, CTC is only applied to deterministic sequence models, where the latent space is discontinuous and sparse, which in turn makes them less capable of handling data variability when compared to variational models. In this paper, we integrate CTC with a variational model and derive loss functions that can be used to train more generalizable sequence models that preserve order. Specifically, we derive two versions of the novel variational CTC based on two reasonable assumptions, the first being that the variational latent variables at each time step are conditionally independent; and the second being that these latent variables are Markovian. We show that both loss functions allow direct optimization of the variational lower bound for the model log-likelihood, and present computationally tractable forms for implementing them.

Compartmentalization is a form of defensive software design in which an application is broken down into isolated but communicating components. Retrofitting compartmentalization into existing applications is often thought to be expensive from the engineering effort and performance overhead points of view. Still, recent years have seen proposals of compartmentalization methods with promises of low engineering efforts and reduced performance impact. ARM Morello combines a modern ARM processor with an implementation of Capability Hardware Enhanced RISC Instructions (CHERI) aiming to provide efficient and secure compartmentalization. Past works exploring CHERI-based compartmentalization were restricted to emulated/FPGA prototypes. In this paper, we explore possible compartmentalization schemes with CHERI on the Morello chip. We propose two approaches representing different trade-offs in terms of engineering effort, security, scalability, and performance impact. We describe and implement these approaches on a prototype OS running bare metal on the Morello chip, compartmentalize two popular applications, and investigate the performance overheads. Furthermore, we show that compartmentalization can be achieved with an engineering cost that can be quite low if one is willing to trade off on scalability and security, and that performance overheads are similar to other intra-address space isolation mechanisms.

We propose a new score-based model with one-step sampling. Previously, score-based models were burdened with heavy computations due to iterative sampling. For substituting the iterative process, we train a standalone generator to compress all the time steps with the gradient backpropagated from the score network. In order to produce meaningful gradients for the generator, the score network is trained to simultaneously match the real data distribution and mismatch the fake data distribution. This model has the following advantages: 1) For sampling, it generates a fake image with only one step forward. 2) For training, it only needs 10 diffusion steps.3) Compared with consistency model, it is free of the ill-posed problem caused by consistency loss. On the popular CIFAR-10 dataset, our model outperforms Consistency Model and Denoising Score Matching, which demonstrates the potential of the framework. We further provide more examples on the MINIST and LSUN datasets. The code is available on GitHub.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司