亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distributed training is an effective way to accelerate the training process of large-scale deep learning models. However, the parameter exchange and synchronization of distributed stochastic gradient descent introduce a large amount of communication overhead. Gradient compression is an effective method to reduce communication overhead. In synchronization SGD compression methods, many Top-k sparsification based gradient compression methods have been proposed to reduce the communication. However, the centralized method based on the parameter servers has the single point of failure problem and limited scalability, while the decentralized method with global parameter exchanging may reduce the convergence rate of training. In contrast with Top-$k$ based methods, we proposed a gradient compression method with globe gradient vector sketching, which uses the Count-Sketch structure to store the gradients to reduce the loss of the accuracy in the training process, named global-sketching SGD (gs-SGD). The gs-SGD has better convergence efficiency on deep learning models and a communication complexity of O($\log d*\log P$), where $d$ is the number of model parameters and P is the number of workers. We conducted experiments on GPU clusters to verify that our method has better convergence efficiency than global Top-$k$ and Sketching-based methods. In addition, gs-SGD achieves 1.3-3.1x higher throughput compared with gTop-$k$, and 1.1-1.2x higher throughput compared with original Sketched-SGD.

相關內容

This paper aims to address the major challenges of Federated Learning (FL) on edge devices: limited memory and expensive communication. We propose a novel method, called Partial Variable Training (PVT), that only trains a small subset of variables on edge devices to reduce memory usage and communication cost. With PVT, we show that network accuracy can be maintained by utilizing more local training steps and devices, which is favorable for FL involving a large population of devices. According to our experiments on two state-of-the-art neural networks for speech recognition and two different datasets, PVT can reduce memory usage by up to 1.9$\times$ and communication cost by up to 593$\times$ while attaining comparable accuracy when compared with full network training.

Federated learning is a powerful distributed learning scheme that allows numerous edge devices to collaboratively train a model without sharing their data. However, training is resource-intensive for edge devices, and limited network bandwidth is often the main bottleneck. Prior work often overcomes the constraints by condensing the models or messages into compact formats, e.g., by gradient compression or distillation. In contrast, we propose ProgFed, the first progressive training framework for efficient and effective federated learning. It inherently reduces computation and two-way communication costs while maintaining the strong performance of the final models. We theoretically prove that ProgFed converges at the same asymptotic rate as standard training on full models. Extensive results on a broad range of architectures, including CNNs (VGG, ResNet, ConvNets) and U-nets, and diverse tasks from simple classification to medical image segmentation show that our highly effective training approach saves up to $20\%$ computation and up to $63\%$ communication costs for converged models. As our approach is also complimentary to prior work on compression, we can achieve a wide range of trade-offs, showing reduced communication of up to $50\times$ at only $0.1\%$ loss in utility.

Federated learning (FL) has been facilitating privacy-preserving deep learning in many walks of life such as medical image classification, network intrusion detection, and so forth. Whereas it necessitates a central parameter server for model aggregation, which brings about delayed model communication and vulnerability to adversarial attacks. A fully decentralized architecture like Swarm Learning allows peer-to-peer communication among distributed nodes, without the central server. One of the most challenging issues in decentralized deep learning is that data owned by each node are usually non-independent and identically distributed (non-IID), causing time-consuming convergence of model training. To this end, we propose a decentralized learning model called Homogeneous Learning (HL) for tackling non-IID data with a self-attention mechanism. In HL, training performs on each round's selected node, and the trained model of a node is sent to the next selected node at the end of each round. Notably, for the selection, the self-attention mechanism leverages reinforcement learning to observe a node's inner state and its surrounding environment's state, and find out which node should be selected to optimize the training. We evaluate our method with various scenarios for an image classification task. The result suggests that HL can produce a better performance compared with standalone learning and greatly reduce both the total training rounds by 50.8% and the communication cost by 74.6% compared with random policy-based decentralized learning for training on non-IID data.

In this paper, we propose and analyze SQuARM-SGD, a communication-efficient algorithm for decentralized training of large-scale machine learning models over a network. In SQuARM-SGD, each node performs a fixed number of local SGD steps using Nesterov's momentum and then sends sparsified and quantized updates to its neighbors regulated by a locally computable triggering criterion. We provide convergence guarantees of our algorithm for general (non-convex) and convex smooth objectives, which, to the best of our knowledge, is the first theoretical analysis for compressed decentralized SGD with momentum updates. We show that the convergence rate of SQuARM-SGD matches that of vanilla SGD. We empirically show that including momentum updates in SQuARM-SGD can lead to better test performance than the current state-of-the-art which does not consider momentum updates.

There has been a growing need to provide Byzantine-resilience in distributed model training. Existing robust distributed learning algorithms focus on developing sophisticated robust aggregators at the parameter servers, but pay less attention to balancing the communication cost and robustness. In this paper, we propose Solon, an algorithmic framework that exploits gradient redundancy to provide communication efficiency and Byzantine robustness simultaneously. Our theoretical analysis shows a fundamental trade-off among computational load, communication cost, and Byzantine robustness. We also develop a concrete algorithm to achieve the optimal trade-off, borrowing ideas from coding theory and sparse recovery. Empirical experiments on various datasets demonstrate that Solon provides significant speedups over existing methods to achieve the same accuracy, over 10 times faster than Bulyan and 80% faster than Draco. We also show that carefully designed Byzantine attacks break Signum and Bulyan, but do not affect the successful convergence of Solon.

Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks. In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge and may severely deteriorate the generalization performance. In this paper, we investigate and identify the limitation of several decentralized optimization algorithms for different degrees of data heterogeneity. We propose a novel momentum-based method to mitigate this decentralized training difficulty. We show in extensive empirical experiments on various CV/NLP datasets (CIFAR-10, ImageNet, and AG News) and several network topologies (Ring and Social Network) that our method is much more robust to the heterogeneity of clients' data than other existing methods, by a significant improvement in test performance ($1\% \!-\! 20\%$). Our code is publicly available.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

Policy gradient methods are widely used in reinforcement learning algorithms to search for better policies in the parameterized policy space. They do gradient search in the policy space and are known to converge very slowly. Nesterov developed an accelerated gradient search algorithm for convex optimization problems. This has been recently extended for non-convex and also stochastic optimization. We use Nesterov's acceleration for policy gradient search in the well-known actor-critic algorithm and show the convergence using ODE method. We tested this algorithm on a scheduling problem. Here an incoming job is scheduled into one of the four queues based on the queue lengths. We see from experimental results that algorithm using Nesterov's acceleration has significantly better performance compared to algorithm which do not use acceleration. To the best of our knowledge this is the first time Nesterov's acceleration has been used with actor-critic algorithm.

In this paper, we present BigDL, a distributed deep learning framework for Big Data platforms and workflows. It is implemented on top of Apache Spark, and allows users to write their deep learning applications as standard Spark programs (running directly on large-scale big data clusters in a distributed fashion). It provides an expressive, "data-analytics integrated" deep learning programming model, so that users can easily build the end-to-end analytics + AI pipelines under a unified programming paradigm; by implementing an AllReduce like operation using existing primitives in Spark (e.g., shuffle, broadcast, and in-memory data persistence), it also provides a highly efficient "parameter server" style architecture, so as to achieve highly scalable, data-parallel distributed training. Since its initial open source release, BigDL users have built many analytics and deep learning applications (e.g., object detection, sequence-to-sequence generation, neural recommendations, fraud detection, etc.) on Spark.

北京阿比特科技有限公司