We study a market mechanism that sets edge prices to incentivize strategic agents to organize trips that efficiently share limited network capacity. This market allows agents to form groups to share trips, make decisions on departure times and route choices, and make payments to cover edge prices and other costs. We develop a new approach to analyze the existence and computation of market equilibrium, building on theories of combinatorial auctions and dynamic network flows. Our approach tackles the challenges in market equilibrium characterization arising from: (a) integer and network constraints on the dynamic flow of trips in sharing limited edge capacity; (b) heterogeneous and private preferences of strategic agents. We provide sufficient conditions on the network topology and agents' preferences that ensure the existence and polynomial-time computation of market equilibrium. We identify a particular market equilibrium that achieves maximum utilities for all agents, and is equivalent to the outcome of the classical Vickery Clark Grove mechanism. Finally, we extend our results to general networks with multiple populations and apply them to compute dynamic tolls for efficient carpooling in San Francisco Bay Area.
Offline Reinforcement Learning (RL) methods leverage previous experiences to learn better policies than the behavior policy used for data collection. In contrast to behavior cloning, which assumes the data is collected from expert demonstrations, offline RL can work with non-expert data and multimodal behavior policies. However, offline RL algorithms face challenges in handling distribution shifts and effectively representing policies due to the lack of online interaction during training. Prior work on offline RL uses conditional diffusion models to represent multimodal behavior in the dataset. Nevertheless, these methods are not tailored toward alleviating the out-of-distribution state generalization. We introduce a novel method, named State Reconstruction for Diffusion Policies (SRDP), incorporating state reconstruction feature learning in the recent class of diffusion policies to address the out-of-distribution generalization problem. State reconstruction loss promotes more descriptive representation learning of states to alleviate the distribution shift incurred by the out-of-distribution (OOD) states. We design a novel 2D Multimodal Contextual Bandit environment to illustrate the OOD generalization of SRDP compared to prior algorithms. In addition, we assess the performance of our model on D4RL continuous control benchmarks, namely the navigation of an 8-DoF ant and forward locomotion of half-cheetah, hopper, and walker2d, achieving state-of-the-art results.
We study the use of binary activated neural networks as interpretable and explainable predictors in the context of regression tasks on tabular data; more specifically, we provide guarantees on their expressiveness, present an approach based on the efficient computation of SHAP values for quantifying the relative importance of the features, hidden neurons and even weights. As the model's simplicity is instrumental in achieving interpretability, we propose a greedy algorithm for building compact binary activated networks. This approach doesn't need to fix an architecture for the network in advance: it is built one layer at a time, one neuron at a time, leading to predictors that aren't needlessly complex for a given task.
The increased digitization of the labour market has given researchers, educators, and companies the means to analyze and better understand the labour market. However, labour market resources, although available in high volumes, tend to be unstructured, and as such, research towards methodologies for the identification, linking, and extraction of entities becomes more and more important. Against the backdrop of this quest for better labour market representations, resource constraints and the unavailability of large-scale annotated data cause a reliance on human domain experts. We demonstrate the effectiveness of prompt-based tuning of pre-trained language models (PLM) in labour market specific applications. Our results indicate that cost-efficient methods such as PTR and instruction tuning without exemplars can significantly increase the performance of PLMs on downstream labour market applications without introducing additional model layers, manual annotations, and data augmentation.
The protection of Industrial Control Systems (ICS) that are employed in public critical infrastructures is of utmost importance due to catastrophic physical damages cyberattacks may cause. The research community requires testbeds for validation and comparing various intrusion detection algorithms to protect ICS. However, there exist high barriers to entry for research and education in the ICS cybersecurity domain due to expensive hardware, software, and inherent dangers of manipulating real-world systems. To close the gap, built upon recently developed 3D high-fidelity simulators, we further showcase our integrated framework to automatically launch cyberattacks, collect data, train machine learning models, and evaluate for practical chemical and manufacturing processes. On our testbed, we validate our proposed intrusion detection model called Minimal Threshold and Window SVM (MinTWin SVM) that utilizes unsupervised machine learning via a one-class SVM in combination with a sliding window and classification threshold. Results show that MinTWin SVM minimizes false positives and is responsive to physical process anomalies. Furthermore, we incorporate our framework with ICS cybersecurity education by using our dataset in an undergraduate machine learning course where students gain hands-on experience in practicing machine learning theory with a practical ICS dataset. All of our implementations have been open-sourced.
We consider a statistical problem to estimate variables (effects) that are associated with the edges of a complete bipartite graph $K_{v_1, v_2}=(V_1, V_2 \, ; E)$. Each data is obtained as a sum of selected effects, a subset of $E$. In order to estimate efficiently, we propose a design called Spanning Bipartite Block Design (SBBD). For SBBDs such that the effects are estimable, we proved that the estimators have the same variance (variance balanced). If each block (a subgraph of $K_{v_1, v_2}$) of SBBD is a semi-regular or a regular bipartite graph, we show that the design is A-optimum. We also show a construction of SBBD using an ($r,\lambda$)-design and an ordered design. A BIBD with prime power blocks gives an A-optimum semi-regular or regular SBBD. At last, we mention that this SBBD is able to use for deep learning.
Although remote working is increasingly adopted during the pandemic, many are concerned by the low-efficiency in the remote working. Missing in text-based communication are non-verbal cues such as facial expressions and body language, which hinders the effective communication and negatively impacts the work outcomes. Prevalent on social media platforms, emojis, as alternative non-verbal cues, are gaining popularity in the virtual workspaces well. In this paper, we study how emoji usage influences developer participation and issue resolution in virtual workspaces. To this end, we collect GitHub issues for a one-year period and apply causal inference techniques to measure the causal effect of emojis on the outcome of issues, controlling for confounders such as issue content, repository, and author information. We find that emojis can significantly reduce the resolution time of issues and attract more user participation. We also compare the heterogeneous effect on different types of issues. These findings deepen our understanding of the developer communities, and they provide design implications on how to facilitate interactions and broaden developer participation.
One of the fundamental challenges in drawing causal inferences from observational studies is that the assumption of no unmeasured confounding is not testable from observed data. Therefore, assessing sensitivity to this assumption's violation is important to obtain valid causal conclusions in observational studies. Although several sensitivity analysis frameworks are available in the casual inference literature, none of them are applicable to observational studies with multivalued treatments. To address this issue, we propose a sensitivity analysis framework for performing sensitivity analysis in multivalued treatment settings. Within this framework, a general class of additive causal estimands has been proposed. We demonstrate that the estimation of the causal estimands under the proposed sensitivity model can be performed very efficiently. Simulation results show that the proposed framework performs well in terms of bias of the point estimates and coverage of the confidence intervals when there is sufficient overlap in the covariate distributions. We illustrate the application of our proposed method by conducting an observational study that estimates the causal effect of fish consumption on blood mercury levels.
Phishing is a major cyber threat to organizations that can cause financial and reputational damage, threatening their existence. The technical measures against phishing should be complemented by awareness training for employees. However, there is little validation of awareness measures. Consequently, organizations have an additional burden when integrating awareness training, as there is no consensus on which method brings the best success. This paper examines how awareness concepts can be successfully implemented and validated. For this purpose, various factors, such as requirements and possible combinations of methods, are taken into account in our case study at a small- and medium-sized enterprise (SME). To measure success, phishing exercises are conducted. The study suggests that pleasant campaigns result in better performance in the simulated phishing exercise. In addition, significant improvements and differences in the target groups could be observed. The implementation of awareness training with integrated key performance indicators can be used as a basis for other organizations.
A sparse graph that preserves an approximation of the shortest paths between all pairs of points in a plane is called a geometric spanner. Using range trees of sublinear size, we design an algorithm in massively parallel computation (MPC) model for constructing a geometric spanner known as Yao-graph. This improves the total time and the total memory of existing algorithms for geometric spanners from subquadratic to near-linear.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.