Light field cameras have a wide range of uses due to their ability to simultaneously record light intensity and direction. The angular resolution of light fields is important for downstream tasks such as depth estimation, yet is often difficult to improve due to hardware limitations. Conventional methods tend to perform poorly against the challenge of large disparity in sparse light fields, while general CNNs have difficulty extracting spatial and angular features coupled together in 4D light fields. The light field disentangling mechanism transforms the 4D light field into 2D image format, which is more favorable for CNN for feature extraction. In this paper, we propose a Deep Disentangling Mechanism, which inherits the principle of the light field disentangling mechanism and further develops the design of the feature extractor and adds advanced network structure. We design a light-field reconstruction network (i.e., DDASR) on the basis of the Deep Disentangling Mechanism, and achieve SOTA performance in the experiments. In addition, we design a Block Traversal Angular Super-Resolution Strategy for the practical application of depth estimation enhancement where the input views is often higher than 2x2 in the experiments resulting in a high memory usage, which can reduce the memory usage while having a better reconstruction performance.
Economic and policy factors are driving the continuous increase in the adoption and usage of electrical vehicles (EVs). However, despite being a cleaner alternative to combustion engine vehicles, EVs have negative impacts on the lifespan of microgrid equipment and energy balance due to increased power demand and the timing of their usage. In our view grid management should leverage on EVs scheduling flexibility to support local network balancing through active participation in demand response programs. In this paper, we propose a model-free solution, leveraging Deep Q-Learning to schedule the charging and discharging activities of EVs within a microgrid to align with a target energy profile provided by the distribution system operator. We adapted the Bellman Equation to assess the value of a state based on specific rewards for EV scheduling actions and used a neural network to estimate Q-values for available actions and the epsilon-greedy algorithm to balance exploitation and exploration to meet the target energy profile. The results are promising showing that the proposed solution can effectively schedule the EVs charging and discharging actions to align with the target profile with a Person coefficient of 0.99, handling effective EVs scheduling situations that involve dynamicity given by the e-mobility features, relying only on data with no knowledge of EVs and microgrid dynamics.
Intraoperative ultrasound imaging is used to facilitate safe brain tumour resection. However, due to challenges with image interpretation and the physical scanning, this tool has yet to achieve widespread adoption in neurosurgery. In this paper, we introduce the components and workflow of a novel, versatile robotic platform for intraoperative ultrasound tissue scanning in neurosurgery. An RGB-D camera attached to the robotic arm allows for automatic object localisation with ArUco markers, and 3D surface reconstruction as a triangular mesh using the ImFusion Suite software solution. Impedance controlled guidance of the US probe along arbitrary surfaces, represented as a mesh, enables collaborative US scanning, i.e., autonomous, teleoperated and hands-on guided data acquisition. A preliminary experiment evaluates the suitability of the conceptual workflow and system components for probe landing on a custom-made soft-tissue phantom. Further assessment in future experiments will be necessary to prove the effectiveness of the presented platform.
Monitoring cameras are extensively utilized in industrial production to monitor equipment running. With advancements in computer vision, device recognition using image features is viable. This paper presents a vision-assisted identification system that implements real-time automatic equipment labeling through image matching in surveillance videos. The system deploys the ORB algorithm to extract image features and the GMS algorithm to remove incorrect matching points. According to the principles of clustering and template locality, a method known as Local Adaptive Clustering (LAC) has been established to enhance label positioning. This method segments matching templates using the cluster center, which improves the efficiency and stability of labels. The experimental results demonstrate that LAC effectively curtails the label drift.
We consider transporting a heavy payload that is attached to multiple multirotors. The current state-of-the-art controllers either do not avoid inter-robot collision at all, leading to crashes when tasked with carrying payloads that are small in size compared to the cable lengths, or use computational demanding nonlinear optimization. We propose an efficient optimization-based cable force allocation for a geometric payload transport controller to effectively avoid such collisions, while retaining the stability properties of the geometric controller. Our approach introduces a cascade of carefully designed quadratic programs that can be solved efficiently on highly constrained embedded flight controllers. We show that our approach exceeds the state-of-the-art controllers in terms of scalability by at least an order of magnitude for up to 10 robots. We demonstrate our method on challenging scenarios with up to three small multirotors with various payloads and cable lengths, where our controller runs in realtime directly on a microcontroller on the robots.
Recently, many algorithms have employed image-adaptive lookup tables (LUTs) to achieve real-time image enhancement. Nonetheless, a prevailing trend among existing methods has been the employment of linear combinations of basic LUTs to formulate image-adaptive LUTs, which limits the generalization ability of these methods. To address this limitation, we propose a novel framework named AttentionLut for real-time image enhancement, which utilizes the attention mechanism to generate image-adaptive LUTs. Our proposed framework consists of three lightweight modules. We begin by employing the global image context feature module to extract image-adaptive features. Subsequently, the attention fusion module integrates the image feature with the priori attention feature obtained during training to generate image-adaptive canonical polyadic tensors. Finally, the canonical polyadic reconstruction module is deployed to reconstruct image-adaptive residual 3DLUT, which is subsequently utilized for enhancing input images. Experiments on the benchmark MIT-Adobe FiveK dataset demonstrate that the proposed method achieves better enhancement performance quantitatively and qualitatively than the state-of-the-art methods.
Pearl's causal hierarchy establishes a clear separation between observational, interventional, and counterfactual questions. Researchers proposed sound and complete algorithms to compute identifiable causal queries at a given level of the hierarchy using the causal structure and data from the lower levels of the hierarchy. However, most of these algorithms assume that we can accurately estimate the probability distribution of the data, which is an impractical assumption for high-dimensional variables such as images. On the other hand, modern generative deep learning architectures can be trained to learn how to accurately sample from such high-dimensional distributions. Especially with the recent rise of foundation models for images, it is desirable to leverage pre-trained models to answer causal queries with such high-dimensional data. To address this, we propose a sequential training algorithm that, given the causal structure and a pre-trained conditional generative model, can train a deep causal generative model, which utilizes the pre-trained model and can provably sample from identifiable interventional and counterfactual distributions. Our algorithm, called Modular-DCM, uses adversarial training to learn the network weights, and to the best of our knowledge, is the first algorithm that can make use of pre-trained models and provably sample from any identifiable causal query in the presence of latent confounders with high-dimensional data. We demonstrate the utility of our algorithm using semi-synthetic and real-world datasets containing images as variables in the causal structure.
Neural implicit fields, such as the neural signed distance field (SDF) of a shape, have emerged as a powerful representation for many applications, e.g., encoding a 3D shape and performing collision detection. Typically, implicit fields are encoded by Multi-layer Perceptrons (MLP) with positional encoding (PE) to capture high-frequency geometric details. However, a notable side effect of such PE-equipped MLPs is the noisy artifacts present in the learned implicit fields. While increasing the sampling rate could in general mitigate these artifacts, in this paper we aim to explain this adverse phenomenon through the lens of Fourier analysis. We devise a tool to determine the appropriate sampling rate for learning an accurate neural implicit field without undesirable side effects. Specifically, we propose a simple yet effective method to estimate the intrinsic frequency of a given network with randomized weights based on the Fourier analysis of the network's responses. It is observed that a PE-equipped MLP has an intrinsic frequency much higher than the highest frequency component in the PE layer. Sampling against this intrinsic frequency following the Nyquist-Sannon sampling theorem allows us to determine an appropriate training sampling rate. We empirically show in the setting of SDF fitting that this recommended sampling rate is sufficient to secure accurate fitting results, while further increasing the sampling rate would not further noticeably reduce the fitting error. Training PE-equipped MLPs simply with our sampling strategy leads to performances superior to the existing methods.
The advent of artificial intelligence technology paved the way of many researches to be made within air combat sector. Academicians and many other researchers did a research on a prominent research direction called autonomous maneuver decision of UAV. Elaborative researches produced some outcomes, but decisions that include Reinforcement Learning(RL) came out to be more efficient. There have been many researches and experiments done to make an agent reach its target in an optimal way, most prominent are Genetic Algorithm(GA) , A star, RRT and other various optimization techniques have been used. But Reinforcement Learning is the well known one for its success. In DARPHA Alpha Dogfight Trials, reinforcement learning prevailed against a real veteran F16 human pilot who was trained by Boeing. This successor model was developed by Heron Systems. After this accomplishment, reinforcement learning bring tremendous attention on itself. In this research we aimed our UAV which has a dubin vehicle dynamic property to move to the target in two dimensional space in an optimal path using Twin Delayed Deep Deterministic Policy Gradients (TD3) and used in experience replay Hindsight Experience Replay(HER).We did tests on two different environments and used simulations.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.