亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we formulate the multi-agent graph bandit problem as a multi-agent extension of the graph bandit problem introduced by Zhang, Johansson, and Li [CISS 57, 1-6 (2023)]. In our formulation, $N$ cooperative agents travel on a connected graph $G$ with $K$ nodes. Upon arrival at each node, agents observe a random reward drawn from a node-dependent probability distribution. The reward of the system is modeled as a weighted sum of the rewards the agents observe, where the weights capture some transformation of the reward associated with multiple agents sampling the same node at the same time. We propose an Upper Confidence Bound (UCB)-based learning algorithm, Multi-G-UCB, and prove that its expected regret over $T$ steps is bounded by $O(\gamma N\log(T)[\sqrt{KT} + DK])$, where $D$ is the diameter of graph $G$ and $\gamma$ a boundedness parameter associated with the weight functions. Lastly, we numerically test our algorithm by comparing it to alternative methods.

相關內容

In this paper, we establish a benchmark for table visual question answering, referred to as the TableVQA-Bench, derived from pre-existing table question-answering (QA) and table structure recognition datasets. It is important to note that existing datasets have not incorporated images or QA pairs, which are two crucial components of TableVQA. As such, the primary objective of this paper is to obtain these necessary components. Specifically, images are sourced either through the application of a \textit{stylesheet} or by employing the proposed table rendering system. QA pairs are generated by exploiting the large language model (LLM) where the input is a text-formatted table. Ultimately, the completed TableVQA-Bench comprises 1,500 QA pairs. We comprehensively compare the performance of various multi-modal large language models (MLLMs) on TableVQA-Bench. GPT-4V achieves the highest accuracy among commercial and open-sourced MLLMs from our experiments. Moreover, we discover that the number of vision queries plays a significant role in TableVQA performance. To further analyze the capabilities of MLLMs in comparison to their LLM backbones, we investigate by presenting image-formatted tables to MLLMs and text-formatted tables to LLMs, respectively. Our findings suggest that processing visual inputs is more challenging than text inputs, as evidenced by the lower performance of MLLMs, despite generally requiring higher computational costs than LLMs. The proposed TableVQA-Bench and evaluation codes are available at \href{//github.com/naver-ai/tablevqabench}{//github.com/naver-ai/tablevqabench}.

In this paper, we present a different way to use two modalities, in which either one modality or the other is seen by a single model. This can be useful when adapting an unimodal model to leverage more information while respecting a limited computational budget. This would mean having a single model that is able to deal with any modalities. To describe this, we coined the term anymodal learning. An example of this, is a use case where, surveillance in a room when the lights are off would be much more valuable using an infrared modality while a visible one would provide more discriminative information when lights are on. This work investigates how to efficiently leverage visible and infrared/thermal modalities for transformer-based object detection backbone to create an anymodal architecture. Our work does not create any inference overhead during the testing while exploring an effective way to exploit the two modalities during the training. To accomplish such a task, we introduce the novel anymodal training technique: Mixed Patches (MiPa), in conjunction with a patch-wise domain agnostic module, which is responsible of learning the best way to find a common representation of both modalities. This approach proves to be able to balance modalities by reaching competitive results on individual modality benchmarks with the alternative of using an unimodal architecture on three different visible-infrared object detection datasets. Finally, our proposed method, when used as a regularization for the strongest modality, can beat the performance of multimodal fusion methods while only requiring a single modality during inference. Notably, MiPa became the state-of-the-art on the LLVIP visible/infrared benchmark. Code: //github.com/heitorrapela/MiPa

This paper introduces a distribution-dependent PAC-Chernoff bound that exhibits perfect tightness for interpolators, even within over-parameterized model classes. This bound, which relies on basic principles of Large Deviation Theory, defines a natural measure of the smoothness of a model, characterized by simple real-valued functions. Building upon this bound and the new concept of smoothness, we present an unified theoretical framework revealing why certain interpolators show an exceptional generalization, while others falter. We theoretically show how a wide spectrum of modern learning methodologies, encompassing techniques such as $\ell_2$-norm, distance-from-initialization and input-gradient regularization, in combination with data augmentation, invariant architectures, and over-parameterization, collectively guide the optimizer toward smoother interpolators, which, according to our theoretical framework, are the ones exhibiting superior generalization performance. This study shows that distribution-dependent bounds serve as a powerful tool to understand the complex dynamics behind the generalization capabilities of over-parameterized interpolators.

In this paper, we first propose a simple and unified approach to stability of phaseless operator to both amplitude and intensity measurement, both complex and real cases on arbitrary geometric set, thus characterizing the robust performance of phase retrieval via empirical minimization method. The unified analysis involves the random embedding of concave lifting operator on tangent space. Similarly, we investigate structured matrix recovery problem through the robust injectivity of linear rank one measurement operator on arbitrary matrix set. The core of our analysis lies in bounding the empirical chaos process. We introduce Talagrand's $\gamma_{\alpha}$ functionals to characterize the relationship between the required number of measurements and the geometric constraints. Additionally, adversarial noise is generated to illustrate the recovery bounds are sharp in the above situations.

In this paper, we investigate a new problem called narrative action evaluation (NAE). NAE aims to generate professional commentary that evaluates the execution of an action. Unlike traditional tasks such as score-based action quality assessment and video captioning involving superficial sentences, NAE focuses on creating detailed narratives in natural language. These narratives provide intricate descriptions of actions along with objective evaluations. NAE is a more challenging task because it requires both narrative flexibility and evaluation rigor. One existing possible solution is to use multi-task learning, where narrative language and evaluative information are predicted separately. However, this approach results in reduced performance for individual tasks because of variations between tasks and differences in modality between language information and evaluation information. To address this, we propose a prompt-guided multimodal interaction framework. This framework utilizes a pair of transformers to facilitate the interaction between different modalities of information. It also uses prompts to transform the score regression task into a video-text matching task, thus enabling task interactivity. To support further research in this field, we re-annotate the MTL-AQA and FineGym datasets with high-quality and comprehensive action narration. Additionally, we establish benchmarks for NAE. Extensive experiment results prove that our method outperforms separate learning methods and naive multi-task learning methods. Data and code are released at //github.com/shiyi-zh0408/NAE_CVPR2024.

In this paper, we set the mathematical foundations of the Dynamical Low-Rank Approximation (DLRA) method for stochastic differential equations. DLRA aims at approximating the solution as a linear combination of a small number of basis vectors with random coefficients (low rank format) with the peculiarity that both the basis vectors and the random coefficients vary in time. While the formulation and properties of DLRA are now well understood for random/parametric equations, the same cannot be said for SDEs and this work aims to fill this gap. We start by rigorously formulating a Dynamically Orthogonal (DO) approximation (an instance of DLRA successfully used in applications) for SDEs, which we then generalize to define a parametrization independent DLRA for SDEs. We show local well-posedness of the DO equations and their equivalence with the DLRA formulation. We also characterize the explosion time of the DO solution by a loss of linear independence of the random coefficients defining the solution expansion and give sufficient conditions for global existence.

In this paper, we present Misaka, a visualized swarm testbed for smart grid algorithm evaluation, also an extendable open-source open-hardware platform for developing tabletop tangible swarm interfaces. The platform consists of a collection of custom-designed 3 omni-directional wheels robots each 10 cm in diameter, high accuracy localization through a microdot pattern overlaid on top of the activity sheets, and a software framework for application development and control, while remaining affordable (per unit cost about 30 USD at the prototype stage). We illustrate the potential of tabletop swarm user interfaces through a set of smart grid algorithm application scenarios developed with Misaka.

Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8$\times$ faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available //github.com/google-research/nested-transformer.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.

北京阿比特科技有限公司