亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we explore the unique challenges -- and opportunities -- of unsupervised federated learning (FL). We develop and analyze a one-shot federated clustering scheme, $k$-FED, based on the widely-used Lloyd's method for $k$-means clustering. In contrast to many supervised problems, we show that the issue of statistical heterogeneity in federated networks can in fact benefit our analysis. We analyse $k$-FED under a center separation assumption and compare it to the best known requirements of its centralized counterpart. Our analysis shows that in heterogeneous regimes where the number of clusters per device $(k')$ is smaller than the total number of clusters over the network $k$, $(k'\le \sqrt{k})$, we can use heterogeneity to our advantage -- significantly weakening the cluster separation requirements for $k$-FED. From a practical viewpoint, $k$-FED also has many desirable properties: it requires only round of communication, can run asynchronously, and can handle partial participation or node/network failures. We motivate our analysis with experiments on common FL benchmarks, and highlight the practical utility of one-shot clustering through use-cases in personalized FL and device sampling.

相關內容

The underlying assumption of recent federated learning (FL) paradigms is that local models usually share the same network architecture as the global model, which becomes impractical for mobile and IoT devices with different setups of hardware and infrastructure. A scalable federated learning framework should address heterogeneous clients equipped with different computation and communication capabilities. To this end, this paper proposes FedHM, a novel federated model compression framework that distributes the heterogeneous low-rank models to clients and then aggregates them into a global full-rank model. Our solution enables the training of heterogeneous local models with varying computational complexities and aggregates a single global model. Furthermore, FedHM not only reduces the computational complexity of the device, but also reduces the communication cost by using low-rank models. Extensive experimental results demonstrate that our proposed \system outperforms the current pruning-based FL approaches in terms of test Top-1 accuracy (4.6% accuracy gain on average), with smaller model size (1.5x smaller on average) under various heterogeneous FL settings.

Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices). However, the data distribution among clients is often non-IID in nature, making efficient optimization difficult. To alleviate this issue, many FL algorithms focus on mitigating the effects of data heterogeneity across clients by introducing a variety of proximal terms, some incurring considerable compute and/or memory overheads, to restrain local updates with respect to the global model. Instead, we consider rethinking solutions to data heterogeneity in FL with a focus on local learning generality rather than proximal restriction. To this end, we first present a systematic study informed by second-order indicators to better understand algorithm effectiveness in FL. Interestingly, we find that standard regularization methods are surprisingly strong performers in mitigating data heterogeneity effects. Based on our findings, we further propose a simple and effective method, FedAlign, to overcome data heterogeneity and the pitfalls of previous methods. FedAlign achieves competitive accuracy with state-of-the-art FL methods across a variety of settings while minimizing computation and memory overhead. Code will be publicly available.

Many assumptions in the federated learning literature present a best-case scenario that can not be satisfied in most real-world applications. An asynchronous setting reflects the realistic environment in which federated learning methods must be able to operate reliably. Besides varying amounts of non-IID data at participants, the asynchronous setting models heterogeneous client participation due to available computational power and battery constraints and also accounts for delayed communications between clients and the server. To reduce the communication overhead associated with asynchronous online federated learning (ASO-Fed), we use the principles of partial-sharing-based communication. In this manner, we reduce the communication load of the participants and, therefore, render participation in the learning task more accessible. We prove the convergence of the proposed ASO-Fed and provide simulations to analyze its behavior further. The simulations reveal that, in the asynchronous setting, it is possible to achieve the same convergence as the federated stochastic gradient (Online-FedSGD) while reducing the communication tenfold.

Internet of Medical Things (IoMT) is becoming ubiquitous with a proliferation of smart medical devices and applications used in smart hospitals, smart-home based care, and nursing homes. It utilizes smart medical devices and cloud computing services along with core Internet of Things (IoT) technologies to sense patients' vital body parameters, monitor health conditions and generate multivariate data to support just-in-time health services. Mostly, this large amount of data is analyzed in centralized servers. Anomaly Detection (AD) in a centralized healthcare ecosystem is often plagued by significant delays in response time with high performance overhead. Moreover, there are inherent privacy issues associated with sending patients' personal health data to a centralized server, which may also introduce several security threats to the AD model, such as possibility of data poisoning. To overcome these issues with centralized AD models, here we propose a Federated Learning (FL) based AD model which utilizes edge cloudlets to run AD models locally without sharing patients' data. Since existing FL approaches perform aggregation on a single server which restricts the scope of FL, in this paper, we introduce a hierarchical FL that allows aggregation at different levels enabling multi-party collaboration. We introduce a novel disease-based grouping mechanism where different AD models are grouped based on specific types of diseases. Furthermore, we develop a new Federated Time Distributed (FedTimeDis) Long Short-Term Memory (LSTM) approach to train the AD model. We present a Remote Patient Monitoring (RPM) use case to demonstrate our model, and illustrate a proof-of-concept implementation using Digital Twin (DT) and edge cloudlets.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.

Attributed graph clustering is challenging as it requires joint modelling of graph structures and node attributes. Recent progress on graph convolutional networks has proved that graph convolution is effective in combining structural and content information, and several recent methods based on it have achieved promising clustering performance on some real attributed networks. However, there is limited understanding of how graph convolution affects clustering performance and how to properly use it to optimize performance for different graphs. Existing methods essentially use graph convolution of a fixed and low order that only takes into account neighbours within a few hops of each node, which underutilizes node relations and ignores the diversity of graphs. In this paper, we propose an adaptive graph convolution method for attributed graph clustering that exploits high-order graph convolution to capture global cluster structure and adaptively selects the appropriate order for different graphs. We establish the validity of our method by theoretical analysis and extensive experiments on benchmark datasets. Empirical results show that our method compares favourably with state-of-the-art methods.

We present one-shot federated learning, where a central server learns a global model over a network of federated devices in a single round of communication. Our approach - drawing on ensemble learning and knowledge aggregation - achieves an average relative gain of 51.5% in AUC over local baselines and comes within 90.1% of the (unattainable) global ideal. We discuss these methods and identify several promising directions of future work.

Heterogeneous information networks (HINs) are ubiquitous in real-world applications. Due to the heterogeneity in HINs, the typed edges may not fully align with each other. In order to capture the semantic subtlety, we propose the concept of aspects with each aspect being a unit representing one underlying semantic facet. Meanwhile, network embedding has emerged as a powerful method for learning network representation, where the learned embedding can be used as features in various downstream applications. Therefore, we are motivated to propose a novel embedding learning framework---AspEm---to preserve the semantic information in HINs based on multiple aspects. Instead of preserving information of the network in one semantic space, AspEm encapsulates information regarding each aspect individually. In order to select aspects for embedding purpose, we further devise a solution for AspEm based on dataset-wide statistics. To corroborate the efficacy of AspEm, we conducted experiments on two real-words datasets with two types of applications---classification and link prediction. Experiment results demonstrate that AspEm can outperform baseline network embedding learning methods by considering multiple aspects, where the aspects can be selected from the given HIN in an unsupervised manner.

北京阿比特科技有限公司