We consider testing invariance of a distribution under an algebraic group of transformations, which includes permutations. In this context, it is commonly believed that one should strive to construct a test based on the entire group. We find that one can sometimes obtain dramatically more power by replacing the entire group with a tiny subgroup. Surprisingly, this allows us to obtain much more power at a much lower computational cost. We examine this finding in the popular group invariance-based Westfall & Young MaxT multiple testing method. Studying the relative efficiency in a Gaussian location model, we find the power gain to be largest in high-dimensional settings.
Teaching software testing presents difficulties due to its abstract and conceptual nature. The lack of tangible outcomes and limited emphasis on hands-on experience further compound the challenge, often leading to difficulties in comprehension for students. This can result in waning engagement and diminishing motivation over time. In this paper, we introduce online unit testing challenges with automated marking as a learning tool via the EdStem platform to enhance students' software testing skills and understanding of software testing concepts. Then, we conducted a survey to investigate the impact of the unit testing challenges with automated marking on student learning. The results from 92 participants showed that our unit testing challenges have kept students more engaged and motivated, fostering deeper understanding and learning, while the automated marking mechanism enhanced students' learning progress, helping them to understand their mistakes and misconceptions quicker than traditional-style human-written manual feedback. Consequently, these results inform educators that the online unit testing challenges with automated marking improve overall student learning experience, and are an effective pedagogical practice in software testing.
We describe a three precision variant of Newton's method for nonlinear equations. We evaluate the nonlinear residual in double precision, store the Jacobian matrix in single precision, and solve the equation for the Newton step with iterative refinement with a factorization in half precision. We analyze the method as an inexact Newton method. This analysis shows that, except for very poorly conditioned Jacobians, the number of nonlinear iterations needed is the same that one would get if one stored and factored the Jacobian in double precision. In many ill-conditioned cases one can use the low precision factorization as a preconditioner for a GMRES iteration. That approach can recover fast convergence of the nonlinear iteration. We present an example to illustrate the results.
Matrix-variate distributions are a recent addition to the model-based clustering field, thereby making it possible to analyze data in matrix form with complex structure such as images and time series. Due to its recent appearance, there is limited literature on matrix-variate data, with even less on dealing with outliers in these models. An approach for clustering matrix-variate normal data with outliers is discussed. The approach, which uses the distribution of subset log-likelihoods, extends the OCLUST algorithm to matrix-variate normal data and uses an iterative approach to detect and trim outliers.
In the recently emerging field of nonabelian group-based cryptography, a prominently used one-way function is the Conjugacy Search Problem (CSP), and two important classes of platform groups are polycyclic and matrix groups. In this paper, we discuss the complexity of the conjugacy search problem (CSP) in these two classes of platform groups using the three protocols in [10], [26], and [29] as our starting point. We produce a polynomial time solution for the CSP in a finite polycyclic group with two generators, and show that a restricted CSP is reducible to a DLP. In matrix groups over finite fields, we usedthe Jordan decomposition of a matrix to produce a polynomial time reduction of an A-restricted CSP, where A is a cyclic subgroup of the general linear group, to a set of DLPs over an extension of Fq. We use these general methods and results to describe concrete cryptanalysis algorithms for these three systems. In particular, we show that in the group of invertible matrices over finite fields and in polycyclic groups with two generators, a CSP where conjugators are restricted to a cyclic subgroup is reducible to a set of O(n2) discrete logarithm problems. Using our general results, we demonstrate concrete cryptanalysis algorithms for each of these three schemes. We believe that our methods and findings are likely to allow for several other heuristic attacks in the general case.
Training neural networks sequentially in time to approximate solution fields of time-dependent partial differential equations can be beneficial for preserving causality and other physics properties; however, the sequential-in-time training is numerically challenging because training errors quickly accumulate and amplify over time. This work introduces Neural Galerkin schemes that update randomized sparse subsets of network parameters at each time step. The randomization avoids overfitting locally in time and so helps prevent the error from accumulating quickly over the sequential-in-time training, which is motivated by dropout that addresses a similar issue of overfitting due to neuron co-adaptation. The sparsity of the update reduces the computational costs of training without losing expressiveness because many of the network parameters are redundant locally at each time step. In numerical experiments with a wide range of evolution equations, the proposed scheme with randomized sparse updates is up to two orders of magnitude more accurate at a fixed computational budget and up to two orders of magnitude faster at a fixed accuracy than schemes with dense updates.
We develop a vector space semantics for Lambek Calculus with Soft Subexponentials, apply the calculus to construct compositional vector interpretations for parasitic gap noun phrases and discourse units with anaphora and ellipsis, and experiment with the constructions in a distributional sentence similarity task. As opposed to previous work, which used Lambek Calculus with a Relevant Modality the calculus used in this paper uses a bounded version of the modality and is decidable. The vector space semantics of this new modality allows us to meaningfully define contraction as projection and provide a linear theory behind what we could previously only achieve via nonlinear maps.
We consider the problem of forming prediction sets in an online setting where the distribution generating the data is allowed to vary over time. Previous approaches to this problem suffer from over-weighting historical data and thus may fail to quickly react to the underlying dynamics. Here we correct this issue and develop a novel procedure with provably small regret over all local time intervals of a given width. We achieve this by modifying the adaptive conformal inference (ACI) algorithm of Gibbs and Cand\`{e}s (2021) to contain an additional step in which the step-size parameter of ACI's gradient descent update is tuned over time. Crucially, this means that unlike ACI, which requires knowledge of the rate of change of the data-generating mechanism, our new procedure is adaptive to both the size and type of the distribution shift. Our methods are highly flexible and can be used in combination with any baseline predictive algorithm that produces point estimates or estimated quantiles of the target without the need for distributional assumptions. We test our techniques on two real-world datasets aimed at predicting stock market volatility and COVID-19 case counts and find that they are robust and adaptive to real-world distribution shifts.
In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.