Recent advances in large language models (LLMs) and the intensifying popularity of ChatGPT-like applications have blurred the boundary of high-quality text generation between humans and machines. However, in addition to the anticipated revolutionary changes to our technology and society, the difficulty of distinguishing LLM-generated texts (AI-text) from human-generated texts poses new challenges of misuse and fairness, such as fake content generation, plagiarism, and false accusation of innocent writers. While existing works show that current AI-text detectors are not robust to LLM-based paraphrasing, this paper aims to bridge this gap by proposing a new framework called RADAR, which jointly trains a Robust AI-text Detector via Adversarial leaRning. RADAR is based on adversarial training of a paraphraser and a detector. The paraphraser's goal is to generate realistic contents to evade AI-text detection. RADAR uses the feedback from the detector to update the paraphraser, and vice versa. Evaluated with 8 different LLMs (Pythia, Dolly 2.0, Palmyra, Camel, GPT-J, Dolly 1.0, LLaMA, and Vicuna) across 4 datasets, experimental results show that RADAR significantly outperforms existing AI-text detection methods, especially when paraphrasing is in place. We also identify the strong transferability of RADAR from instruction-tuned LLMs to other LLMs, and evaluate the improved capability of RADAR via GPT-3.5.
Large language models (LMs) beyond a certain scale, demonstrate the emergent capability of generating free-text rationales for their predictions via chain-of-thought (CoT) prompting. While CoT can yield dramatically improved performance, such gains are only observed for sufficiently large LMs. Even more concerning, there is little guarantee that the generated rationales are consistent with LM's predictions or faithfully justify the decisions. In this work, we propose a faithful knowledge distillation method to learn a small, self-consistent CoT model from a teacher model that is orders of magnitude larger. To form better supervision, we elicit rationales supporting the gold answers from a large LM (teacher) by contrastive decoding, which encourages the teacher to generate tokens that become more plausible only when the answer is considered. To ensure faithful distillation, we use the teacher-generated rationales to learn a student LM with a counterfactual reasoning objective, which prevents the student from ignoring the rationales to make inconsistent predictions. Experiments show that, while yielding comparable end-task performance, our method can generate CoT rationales that are more faithful than baselines do. Further analysis suggests that such a model respects the rationales more when making decisions; thus, we can improve its performance more by refining its rationales.
People are increasingly turning to large language models (LLMs) for complex information tasks like academic research or planning a move to another city. However, while they often require working in a nonlinear manner -- e.g., to arrange information spatially to organize and make sense of it, current interfaces for interacting with LLMs are generally linear to support conversational interaction. To address this limitation and explore how we can support LLM-powered exploration and sensemaking, we developed Sensecape, an interactive system designed to support complex information tasks with an LLM by enabling users to (1) manage the complexity of information through multilevel abstraction and (2) seamlessly switch between foraging and sensemaking. Our within-subject user study reveals that Sensecape empowers users to explore more topics and structure their knowledge hierarchically, thanks to the externalization of levels of abstraction. We contribute implications for LLM-based workflows and interfaces for information tasks.
Vision Transformers (ViTs) with outstanding performance becomes a popular backbone of deep learning models for the main-stream vision tasks including classification, object detection, and segmentation. Other than the performance, reliability is also a critical metric for the adoption of ViTs in safety-critical applications such as autonomous driving and robotics. With the observation that the major computing blocks in ViTs such as multi-head attention and feed forward are usually performed with general matrix multiplication (GEMM), we propose a classical algorithm-based fault tolerance (ABFT) strategy originally developed for GEMM to protect ViTs against soft errors in the underlying computing engines. Unlike classical ABFT that will invoke the expensive error recovery procedure whenever computing errors are detected, we leverage the inherent fault-tolerance of ViTs and propose an approximate ABFT, namely ApproxABFT, to invoke the error recovery procedure only when the computing errors are significant enough, which skips many useless error recovery procedures and simplifies the overall GEMM error recovery. Meanwhile, it also relaxes the error threshold in error recovery procedure and ignores minor computing errors, which reduces the error recovery complexity and improves the error recovery quality. In addition, we also apply a fine-grained blocking strategy to ApproxABFT and split GEMM with distinct sizes into smaller sub blocks such that it can smooth the error thresholds across ViTs and further improve the error recovery quality. According to our experiments, the ApproxABFT reduces the computing overhead by 25.92\% to 81.62\% and improves the model accuracy by 2.63\% to 72.56\% compared to the baseline ABFT while the blocking optimization further reduces the computing overhead by 6.56\% to 73.5\% with comparable accuracy.
With the increasing practicality of deep learning applications, practitioners are inevitably faced with datasets corrupted by noise from various sources such as measurement errors, mislabeling, and estimated surrogate inputs/outputs that can adversely impact the optimization results. It is a common practice to improve the optimization algorithm's robustness to noise, since this algorithm is ultimately in charge of updating the network parameters. Previous studies revealed that the first-order moment used in Adam-like stochastic gradient descent optimizers can be modified based on the Student's t-distribution. While this modification led to noise-resistant updates, the other associated statistics remained unchanged, resulting in inconsistencies in the assumed models. In this paper, we propose AdaTerm, a novel approach that incorporates the Student's t-distribution to derive not only the first-order moment but also all the associated statistics. This provides a unified treatment of the optimization process, offering a comprehensive framework under the statistical model of the t-distribution for the first time. The proposed approach offers several advantages over previously proposed approaches, including reduced hyperparameters and improved robustness and adaptability. This noise-adaptive behavior contributes to AdaTerm's exceptional learning performance, as demonstrated through various optimization problems with different and/or unknown noise ratios. Furthermore, we introduce a new technique for deriving a theoretical regret bound without relying on AMSGrad, providing a valuable contribution to the field
Semantic, instance, and panoptic segmentations have been addressed using different and specialized frameworks despite their underlying connections. This paper presents a unified, simple, and effective framework for these essentially similar tasks. The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels, where each kernel is responsible for generating a mask for either a potential instance or a stuff class. To remedy the difficulties of distinguishing various instances, we propose a kernel update strategy that enables each kernel dynamic and conditional on its meaningful group in the input image. K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free. Without bells and whistles, K-Net surpasses all previous published state-of-the-art single-model results of panoptic segmentation on MS COCO test-dev split and semantic segmentation on ADE20K val split with 55.2% PQ and 54.3% mIoU, respectively. Its instance segmentation performance is also on par with Cascade Mask R-CNN on MS COCO with 60%-90% faster inference speeds. Code and models will be released at //github.com/ZwwWayne/K-Net/.
Recent VQA models may tend to rely on language bias as a shortcut and thus fail to sufficiently learn the multi-modal knowledge from both vision and language. In this paper, we investigate how to capture and mitigate language bias in VQA. Motivated by causal effects, we proposed a novel counterfactual inference framework, which enables us to capture the language bias as the direct causal effect of questions on answers and reduce the language bias by subtracting the direct language effect from the total causal effect. Experiments demonstrate that our proposed counterfactual inference framework 1) is general to various VQA backbones and fusion strategies, 2) achieves competitive performance on the language-bias sensitive VQA-CP dataset while performs robustly on the balanced VQA v2 dataset.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.