亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a novel, computationally-efficient algorithm for predictive inference (PI) that requires no distributional assumptions on the data and can be computed faster than existing bootstrap-type methods for neural networks. Specifically, if there are $n$ training samples, bootstrap methods require training a model on each of the $n$ subsamples of size $n-1$; for large models like neural networks, this process can be computationally prohibitive. In contrast, our proposed method trains one neural network on the full dataset with $(\epsilon, \delta)$-differential privacy (DP) and then approximates each leave-one-out model efficiently using a linear approximation around the differentially-private neural network estimate. With exchangeable data, we prove that our approach has a rigorous coverage guarantee that depends on the preset privacy parameters and the stability of the neural network, regardless of the data distribution. Simulations and experiments on real data demonstrate that our method satisfies the coverage guarantees with substantially reduced computation compared to bootstrap methods.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

This paper introduces Grounded Image Text Matching with Mismatched Relation (GITM-MR), a novel visual-linguistic joint task that evaluates the relation understanding capabilities of transformer-based pre-trained models. GITM-MR requires a model to first determine if an expression describes an image, then localize referred objects or ground the mismatched parts of the text. We provide a benchmark for evaluating pre-trained models on this task, with a focus on the challenging settings of limited data and out-of-distribution sentence lengths. Our evaluation demonstrates that pre-trained models lack data efficiency and length generalization ability. To address this, we propose the Relation-sensitive Correspondence Reasoning Network (RCRN), which incorporates relation-aware reasoning via bi-directional message propagation guided by language structure. RCRN can be interpreted as a modular program and delivers strong performance in both length generalization and data efficiency.

This paper establishes the asymptotic independence between the quadratic form and maximum of a sequence of independent random variables. Based on this theoretical result, we find the asymptotic joint distribution for the quadratic form and maximum, which can be applied into the high-dimensional testing problems. By combining the sum-type test and the max-type test, we propose the Fisher's combination tests for the one-sample mean test and two-sample mean test. Under this novel general framework, several strong assumptions in existing literature have been relaxed. Monte Carlo simulation has been done which shows that our proposed tests are strongly robust to both sparse and dense data.

This paper proposes a locally differentially private federated learning algorithm for strongly convex but possibly nonsmooth problems that protects the gradients of each worker against an honest but curious server. The proposed algorithm adds artificial noise to the shared information to ensure privacy and dynamically allocates the time-varying noise variance to minimize an upper bound of the optimization error subject to a predefined privacy budget constraint. This allows for an arbitrarily large but finite number of iterations to achieve both privacy protection and utility up to a neighborhood of the optimal solution, removing the need for tuning the number of iterations. Numerical results show the superiority of the proposed algorithm over state-of-the-art methods.

This paper discusses our approaches for task-oriented conversational modelling using subjective knowledge, with a particular emphasis on response generation. Our methodology was shaped by an extensive data analysis that evaluated key factors such as response length, sentiment, and dialogue acts present in the provided dataset. We used few-shot learning to augment the data with newly generated subjective knowledge items and present three approaches for DSTC11: (1) task-specific model exploration, (2) incorporation of the most frequent question into all generated responses, and (3) a waterfall prompting technique using a combination of both GPT-3 and ChatGPT.

This paper studies computational aspects of an asymptotically distribution-free goodness-of-fit test for non-Gaussian distributions based on the Khmaladze martingale transformation when the location and scale parameters of the distribution are unknown. On top of that, we propose another goodness-of-fit test better than existing one in terms of a statistical power. Simulation studies demonstrate that the proposed test compares favorably with the existing test.

This paper introduces a computing framework that combines Flow-Based Programming (FBP) and Large Language Models (LLMs) to enable Just-In-Time Programming (JITP). JITP empowers users, regardless of their programming expertise, to actively participate in the development and automation process by leveraging their task-time algorithmic insights. By seamlessly integrating LLMs into the FBP workflow, the framework allows users to request and generate code in real-time, enabling dynamic code execution within a flow-based program. The paper explores the motivations, principles, and benefits of JITP, showcasing its potential in automating tasks, orchestrating data workflows, and accelerating software development. Through a fully implemented JITP framework using the Composable platform, we explore several examples and use cases to illustrate the benefits of the framework in data engineering, data science and software development. The results demonstrate how the fusion of FBP and LLMs creates a powerful and user-centric computing paradigm.

This paper introduces a novel computational framework for solving alternating current optimal power flow (ACOPF) problems using graphics processing units (GPUs). While GPUs have demonstrated remarkable performance in various computing domains, their application in AC OPF has been limited due to challenges associated with porting sparse automatic differentiation (AD) and sparse linear solver routines to GPUs. We aim to address these issues with two key strategies. First, we utilize a single-instruction, multiple-data (SIMD) abstraction of nonlinear programs (NLP). This approach enables the specification of model equations while preserving their parallelizable structure, and in turn, facilitates the implementation of AD routines that can exploit such structure. Second, we employ a condensed-space interior-point method (IPM) with an inequality relaxation strategy. This technique involves relaxing equality constraints to inequalities and condensing the Karush-Kuhn-Tucker system into a much smaller positive definite system. This strategy offers the key advantage of being able to factorize the KKT matrix without numerical pivoting, which in the past has hampered the parallelization of the IPM algorithm. By combining these two strategies, we can perform the majority of operations on GPUs while keeping the data residing in the device memory only. Comprehensive numerical benchmark results showcase the substantial computational advantage of our approach. Remarkably, for solving large-scale AC OPF problems to a moderate accuracy, our implementations -- MadNLP.jl and ExaModels.jl -- running on NVIDIA GPUs achieve an order of magnitude speedup compared to state-of-the-art tools running on contemporary CPUs.

This paper proposes a novel framework for certifying the fairness of predictive models trained on biased data. It draws from query answering for incomplete and inconsistent databases to formulate the problem of consistent range approximation (CRA) of fairness queries for a predictive model on a target population. The framework employs background knowledge of the data collection process and biased data, working with or without limited statistics about the target population, to compute a range of answers for fairness queries. Using CRA, the framework builds predictive models that are certifiably fair on the target population, regardless of the availability of external data during training. The framework's efficacy is demonstrated through evaluations on real data, showing substantial improvement over existing state-of-the-art methods.

Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司