亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We address a three-tier numerical framework based on manifold learning for the forecasting of high-dimensional time series. At the first step, we embed the time series into a reduced low-dimensional space using a nonlinear manifold learning algorithm such as Locally Linear Embedding and Diffusion Maps. At the second step, we construct reduced-order regression models on the manifold, in particular Multivariate Autoregressive (MVAR) and Gaussian Process Regression (GPR) models, to forecast the embedded dynamics. At the final step, we lift the embedded time series back to the original high-dimensional space using Radial Basis Functions interpolation and Geometric Harmonics. For our illustrations, we test the forecasting performance of the proposed numerical scheme with four sets of time series: three synthetic stochastic ones resembling EEG signals produced from linear and nonlinear stochastic models with different model orders, and one real-world data set containing daily time series of 10 key foreign exchange rates (FOREX) spanning the time period 03/09/2001-29/10/2020. The forecasting performance of the proposed numerical scheme is assessed using the combinations of manifold learning, modelling and lifting approaches. We also provide a comparison with the Principal Component Analysis algorithm as well as with the naive random walk model and the MVAR and GPR models trained and implemented directly in the high-dimensional space.

相關內容

流(liu)(liu)形(xing)學(xue)(xue)習(xi)(xi),全稱流(liu)(liu)形(xing)學(xue)(xue)習(xi)(xi)方法(Manifold Learning),自2000年(nian)在(zai)著名的(de)(de)(de)科學(xue)(xue)雜志《Science》被首次(ci)提出以(yi)(yi)來,已成為信(xin)息科學(xue)(xue)領域的(de)(de)(de)研究熱(re)點。在(zai)理論和應用上,流(liu)(liu)形(xing)學(xue)(xue)習(xi)(xi)方法都具有重要的(de)(de)(de)研究意(yi)義。假設數(shu)據(ju)是(shi)(shi)均勻采(cai)(cai)樣(yang)于一個(ge)高(gao)(gao)維歐氏空間(jian)中(zhong)的(de)(de)(de)低(di)維流(liu)(liu)形(xing),流(liu)(liu)形(xing)學(xue)(xue)習(xi)(xi)就是(shi)(shi)從高(gao)(gao)維采(cai)(cai)樣(yang)數(shu)據(ju)中(zhong)恢復低(di)維流(liu)(liu)形(xing)結構,即找(zhao)到(dao)(dao)高(gao)(gao)維空間(jian)中(zhong)的(de)(de)(de)低(di)維流(liu)(liu)形(xing),并求(qiu)出相應的(de)(de)(de)嵌入映射,以(yi)(yi)實現(xian)維數(shu)約簡或者數(shu)據(ju)可視(shi)化。它(ta)是(shi)(shi)從觀測到(dao)(dao)的(de)(de)(de)現(xian)象(xiang)中(zhong)去(qu)尋找(zhao)事物(wu)的(de)(de)(de)本(ben)質,找(zhao)到(dao)(dao)產(chan)生數(shu)據(ju)的(de)(de)(de)內在(zai)規律。

Recent studies focus on formulating the traffic forecasting as a spatio-temporal graph modeling problem. They typically construct a static spatial graph at each time step and then connect each node with itself between adjacent time steps to construct the spatio-temporal graph. In such a graph, the correlations between different nodes at different time steps are not explicitly reflected, which may restrict the learning ability of graph neural networks. Meanwhile, those models ignore the dynamic spatio-temporal correlations among nodes as they use the same adjacency matrix at different time steps. To overcome these limitations, we propose a Spatio-Temporal Joint Graph Convolutional Networks (STJGCN) for traffic forecasting over several time steps ahead on a road network. Specifically, we construct both pre-defined and adaptive spatio-temporal joint graphs (STJGs) between any two time steps, which represent comprehensive and dynamic spatio-temporal correlations. We further design dilated causal spatio-temporal joint graph convolution layers on STJG to capture the spatio-temporal dependencies from distinct perspectives with multiple ranges. A multi-range attention mechanism is proposed to aggregate the information of different ranges. Experiments on four public traffic datasets demonstrate that STJGCN is computationally efficient and outperforms 11 state-of-the-art baseline methods.

Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.

Standard Markov chain Monte Carlo methods struggle to explore distributions that are concentrated in the neighbourhood of low-dimensional structures. These pathologies naturally occur in a number of situations. For example, they are common to Bayesian inverse problem modelling and Bayesian neural networks, when observational data are highly informative, or when a subset of the statistical parameters of interest are non-identifiable. In this paper, we propose a strategy that transforms the original sampling problem into the task of exploring a distribution supported on a manifold embedded in a higher dimensional space; in contrast to the original posterior this lifted distribution remains diffuse in the vanishing noise limit. We employ a constrained Hamiltonian Monte Carlo method which exploits the manifold geometry of this lifted distribution, to perform efficient approximate inference. We demonstrate in several numerical experiments that, contrarily to competing approaches, the sampling efficiency of our proposed methodology does not degenerate as the target distribution to be explored concentrates near low dimensional structures.

Molecular dynamics (MD) simulation predicts the trajectory of atoms by solving Newton's equation of motion with a numeric integrator. Due to physical constraints, the time step of the integrator need to be small to maintain sufficient precision. This limits the efficiency of simulation. To this end, we introduce a graph neural network (GNN) based model, MDNet, to predict the evolution of coordinates and momentum with large time steps. In addition, MDNet can easily scale to a larger system, due to its linear complexity with respect to the system size. We demonstrate the performance of MDNet on a 4000-atom system with large time steps, and show that MDNet can predict good equilibrium and transport properties, well aligned with standard MD simulations.

Producing an accurate weather forecast and a reliable quantification of its uncertainty is an open scientific challenge. Ensemble forecasting is, so far, the most successful approach to produce relevant forecasts along with an estimation of their uncertainty. The main limitations of ensemble forecasting are the high computational cost and the difficulty to capture and quantify different sources of uncertainty, particularly those associated with model errors. In this work proof-of-concept model experiments are conducted to examine the performance of ANNs trained to predict a corrected state of the system and the state uncertainty using only a single deterministic forecast as input. We compare different training strategies: one based on a direct training using the mean and spread of an ensemble forecast as target, the other ones rely on an indirect training strategy using a deterministic forecast as target in which the uncertainty is implicitly learned from the data. For the last approach two alternative loss functions are proposed and evaluated, one based on the data observation likelihood and the other one based on a local estimation of the error. The performance of the networks is examined at different lead times and in scenarios with and without model errors. Experiments using the Lorenz'96 model show that the ANNs are able to emulate some of the properties of ensemble forecasts like the filtering of the most unpredictable modes and a state-dependent quantification of the forecast uncertainty. Moreover, ANNs provide a reliable estimation of the forecast uncertainty in the presence of model error.

Spatio-temporal forecasting has numerous applications in analyzing wireless, traffic, and financial networks. Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data. Recent advances in deep learning allow for better modelling of spatial and temporal dependencies. While most of these models focus on obtaining accurate point forecasts, they do not characterize the prediction uncertainty. In this work, we consider the time-series data as a random realization from a nonlinear state-space model and target Bayesian inference of the hidden states for probabilistic forecasting. We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings. Thorough experimentation on several real world time-series datasets demonstrates that our approach provides better characterization of uncertainty while maintaining comparable accuracy to the state-of-the art point forecasting methods.

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

This paper addresses the difficulty of forecasting multiple financial time series (TS) conjointly using deep neural networks (DNN). We investigate whether DNN-based models could forecast these TS more efficiently by learning their representation directly. To this end, we make use of the dynamic factor graph (DFG) from that we enhance by proposing a novel variable-length attention-based mechanism to render it memory-augmented. Using this mechanism, we propose an unsupervised DNN architecture for multivariate TS forecasting that allows to learn and take advantage of the relationships between these TS. We test our model on two datasets covering 19 years of investment funds activities. Our experimental results show that our proposed approach outperforms significantly typical DNN-based and statistical models at forecasting their 21-day price trajectory.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

Image foreground extraction is a classical problem in image processing and vision, with a large range of applications. In this dissertation, we focus on the extraction of text and graphics in mixed-content images, and design novel approaches for various aspects of this problem. We first propose a sparse decomposition framework, which models the background by a subspace containing smooth basis vectors, and foreground as a sparse and connected component. We then formulate an optimization framework to solve this problem, by adding suitable regularizations to the cost function to promote the desired characteristics of each component. We present two techniques to solve the proposed optimization problem, one based on alternating direction method of multipliers (ADMM), and the other one based on robust regression. Promising results are obtained for screen content image segmentation using the proposed algorithm. We then propose a robust subspace learning algorithm for the representation of the background component using training images that could contain both background and foreground components, as well as noise. With the learnt subspace for the background, we can further improve the segmentation results, compared to using a fixed subspace. Lastly, we investigate a different class of signal/image decomposition problem, where only one signal component is active at each signal element. In this case, besides estimating each component, we need to find their supports, which can be specified by a binary mask. We propose a mixed-integer programming problem, that jointly estimates the two components and their supports through an alternating optimization scheme. We show the application of this algorithm on various problems, including image segmentation, video motion segmentation, and also separation of text from textured images.

北京阿比特科技有限公司