亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Several code summarization techniques have been proposed in the literature to automatically document a code snippet or a function. Ideally, software developers should be involved in assessing the quality of the generated summaries. However, in most cases, researchers rely on automatic evaluation metrics such as BLEU, ROUGE, and METEOR. These metrics are all based on the same assumption: The higher the textual similarity between the generated summary and a reference summary written by developers, the higher its quality. However, there are two reasons for which this assumption falls short: (i) reference summaries, e.g., code comments collected by mining software repositories, may be of low quality or even outdated; (ii) generated summaries, while using a different wording than a reference one, could be semantically equivalent to it, thus still being suitable to document the code snippet. In this paper, we perform a thorough empirical investigation on the complementarity of different types of metrics in capturing the quality of a generated summary. Also, we propose to address the limitations of existing metrics by considering a new dimension, capturing the extent to which the generated summary aligns with the semantics of the documented code snippet, independently from the reference summary. To this end, we present a new metric based on contrastive learning to capture said aspect. We empirically show that the inclusion of this novel dimension enables a more effective representation of developers' evaluations regarding the quality of automatically generated summaries.

相關內容

代(dai)碼(Code)是專知網(wang)的一(yi)個重要知識(shi)資料文檔板塊(kuai),旨在整理收錄論文源代(dai)碼、復現代(dai)碼,經典工(gong)程代(dai)碼等,便于(yu)用戶查閱下載使用。

Biometric systems based on brain activity have been proposed as an alternative to passwords or to complement current authentication techniques. By leveraging the unique brainwave patterns of individuals, these systems offer the possibility of creating authentication solutions that are resistant to theft, hands-free, accessible, and potentially even revocable. However, despite the growing stream of research in this area, faster advance is hindered by reproducibility problems. Issues such as the lack of standard reporting schemes for performance results and system configuration, or the absence of common evaluation benchmarks, make comparability and proper assessment of different biometric solutions challenging. Further, barriers are erected to future work when, as so often, source code is not published open access. To bridge this gap, we introduce NeuroBench, a flexible open source tool to benchmark brainwave-based authentication models. It incorporates nine diverse datasets, implements a comprehensive set of pre-processing parameters and machine learning algorithms, enables testing under two common adversary models (known vs unknown attacker), and allows researchers to generate full performance reports and visualizations. We use NeuroBench to investigate the shallow classifiers and deep learning-based approaches proposed in the literature, and to test robustness across multiple sessions. We observe a 37.6\% reduction in Equal Error Rate (EER) for unknown attacker scenarios (typically not tested in the literature), and we highlight the importance of session variability to brainwave authentication. All in all, our results demonstrate the viability and relevance of NeuroBench in streamlining fair comparisons of algorithms, thereby furthering the advancement of brainwave-based authentication through robust methodological practices.

Return-oriented programming (ROP) is a code reuse attack that chains short snippets of existing code to perform arbitrary operations on target machines. Existing detection methods against ROP exhibit unsatisfactory detection accuracy and/or have high runtime overhead. In this paper, we present ROPNN, which innovatively combines address space layout guided disassembly and deep neural networks to detect ROP payloads. The disassembler treats application input data as code pointers and aims to find any potential gadget chains, which are then classified by a deep neural network as benign or malicious. Our experiments show that ROPNN has high detection rate (99.3%) and a very low false positive rate (0.01%). ROPNN successfully detects all of the 100 real-world ROP exploits that are collected in-the-wild, created manually or created by ROP exploit generation tools. Additionally, ROPNN detects all 10 ROP exploits that can bypass Bin-CFI. ROPNN is non-intrusive and does not incur any runtime overhead to the protected program.

We consider the problem of sparse nonnegative matrix factorization (NMF) using archetypal regularization. The goal is to represent a collection of data points as nonnegative linear combinations of a few nonnegative sparse factors with appealing geometric properties, arising from the use of archetypal regularization. We generalize the notion of robustness studied in Javadi and Montanari (2019) (without sparsity) to the notions of (a) strong robustness that implies each estimated archetype is close to the underlying archetypes and (b) weak robustness that implies there exists at least one recovered archetype that is close to the underlying archetypes. Our theoretical results on robustness guarantees hold under minimal assumptions on the underlying data, and applies to settings where the underlying archetypes need not be sparse. We present theoretical results and illustrative examples to strengthen the insights underlying the notions of robustness. We propose new algorithms for our optimization problem; and present numerical experiments on synthetic and real data sets that shed further insights into our proposed framework and theoretical developments.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these areas, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

北京阿比特科技有限公司