亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The task of answer retrieval in the legal domain aims to help users to seek relevant legal advice from massive amounts of professional responses. Two main challenges hinder applying existing answer retrieval approaches in other domains to the legal domain: (1) a huge knowledge gap between lawyers and non-professionals; and (2) a mix of informal and formal content on legal QA websites. To tackle these challenges, we propose CE_FS, a novel cross-encoder (CE) re-ranker based on the fine-grained structured inputs. CE_FS uses additional structured information in the CQA data to improve the effectiveness of cross-encoder re-rankers. Furthermore, we propose LegalQA: a real-world benchmark dataset for evaluating answer retrieval in the legal domain. Experiments conducted on LegalQA show that our proposed method significantly outperforms strong cross-encoder re-rankers fine-tuned on MS MARCO. Our novel finding is that adding the question tags of each question besides the question description and title into the input of cross-encoder re-rankers structurally boosts the rankers' effectiveness. While we study our proposed method in the legal domain, we believe that our method can be applied in similar applications in other domains.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Networking · Networks · ReLU · 操作 ·
2024 年 2 月 23 日

A characterization of the representability of neural networks is relevant to comprehend their success in artificial intelligence. This study investigate two topics on ReLU neural network expressivity and their connection with a conjecture related to the minimum depth required for representing any continuous piecewise linear function (CPWL). The topics are the minimal depth representation of the sum and max operations, as well as the exploration of polytope neural networks. For the sum operation, we establish a sufficient condition on the minimal depth of the operands to find the minimal depth of the operation. In contrast, regarding the max operation, a comprehensive set of examples is presented, demonstrating that no sufficient conditions, depending solely on the depth of the operands, would imply a minimal depth for the operation. The study also examine the minimal depth relationship between convex CPWL functions. On polytope neural networks, we investigate several fundamental properties, deriving results equivalent to those of ReLU networks, such as depth inclusions and depth computation from vertices. Notably, we compute the minimal depth of simplices, which is strictly related to the minimal depth conjecture in ReLU networks.

Typical recommendation and ranking methods aim to optimize the satisfaction of users, but they are often oblivious to their impact on the items (e.g., products, jobs, news, video) and their providers. However, there has been a growing understanding that the latter is crucial to consider for a wide range of applications, since it determines the utility of those being recommended. Prior approaches to fairness-aware recommendation optimize a regularized objective to balance user satisfaction and item fairness based on some notion such as exposure fairness. These existing methods have been shown to be effective in controlling fairness, however, most of them are computationally inefficient, limiting their applications to only unrealistically small-scale situations. This indeed implies that the literature does not yet provide a solution to enable a flexible control of exposure in the industry-scale recommender systems where millions of users and items exist. To enable a computationally efficient exposure control even for such large-scale systems, this work develops a scalable, fast, and fair method called \emph{\textbf{ex}posure-aware \textbf{ADMM} (\textbf{exADMM})}. exADMM is based on implicit alternating least squares (iALS), a conventional scalable algorithm for collaborative filtering, but optimizes a regularized objective to achieve a flexible control of accuracy-fairness tradeoff. A particular technical challenge in developing exADMM is the fact that the fairness regularizer destroys the separability of optimization subproblems for users and items, which is an essential property to ensure the scalability of iALS. Therefore, we develop a set of optimization tools to enable yet scalable fairness control with provable convergence guarantees as a basis of our algorithm.

Rapid progress in scalable, commoditized tools for data collection and data processing has made it possible for firms and policymakers to employ ever more complex metrics as guides for decision-making. These developments have highlighted a prevailing challenge -- deciding *which* metrics to compute. In particular, a firm's ability to compute a wider range of existing metrics does not address the problem of *unknown unknowns*, which reflects informational limitations on the part of the firm. To guide the choice of metrics in the face of this informational problem, we turn to the evaluated agents themselves, who may have more information than a principal about how to measure outcomes effectively. We model this interaction as a simple agency game, where we ask: *When does an agent have an incentive to reveal the observability of a cost-correlated variable to the principal?* There are two effects: better information reduces the agent's information rents but also makes some projects go forward that otherwise would fail. We show that the agent prefers to reveal information that exposes a strong enough differentiation between high and low costs. Expanding the agent's action space to include the ability to *garble* their information, we show that the agent often prefers to garble over full revelation. Still, giving the agent the ability to garble can lead to higher total welfare. Our model has analogies with price discrimination, and we leverage some of these synergies to analyze total welfare.

The development of artificial intelligence systems with advanced reasoning capabilities represents a persistent and long-standing research question. Traditionally, the primary strategy to address this challenge involved the adoption of symbolic approaches, where knowledge was explicitly represented by means of symbols and explicitly programmed rules. However, with the advent of machine learning, there has been a paradigm shift towards systems that can autonomously learn from data, requiring minimal human guidance. In light of this shift, in latest years, there has been increasing interest and efforts at endowing neural networks with the ability to reason, bridging the gap between data-driven learning and logical reasoning. Within this context, Neural Algorithmic Reasoning (NAR) stands out as a promising research field, aiming to integrate the structured and rule-based reasoning of algorithms with the adaptive learning capabilities of neural networks, typically by tasking neural models to mimic classical algorithms. In this dissertation, we provide theoretical and practical contributions to this area of research. We explore the connections between neural networks and tropical algebra, deriving powerful architectures that are aligned with algorithm execution. Furthermore, we discuss and show the ability of such neural reasoners to learn and manipulate complex algorithmic and combinatorial optimization concepts, such as the principle of strong duality. Finally, in our empirical efforts, we validate the real-world utility of NAR networks across different practical scenarios. This includes tasks as diverse as planning problems, large-scale edge classification tasks and the learning of polynomial-time approximate algorithms for NP-hard combinatorial problems. Through this exploration, we aim to showcase the potential integrating algorithmic reasoning in machine learning models.

Service providers of large language model (LLM) applications collect user instructions in the wild and use them in further aligning LLMs with users' intentions. These instructions, which potentially contain sensitive information, are annotated by human workers in the process. This poses a new privacy risk not addressed by the typical private optimization. To this end, we propose using synthetic instructions to replace real instructions in data annotation and model fine-tuning. Formal differential privacy is guaranteed by generating those synthetic instructions using privately fine-tuned generators. Crucial in achieving the desired utility is our novel filtering algorithm that matches the distribution of the synthetic instructions to that of the real ones. In both supervised fine-tuning and reinforcement learning from human feedback, our extensive experiments demonstrate the high utility of the final set of synthetic instructions by showing comparable results to real instructions. In supervised fine-tuning, models trained with private synthetic instructions outperform leading open-source models such as Vicuna.

Context and motivation: Requirements engineering of complex IT systems needs to manage the many, and often vague and conflicting, organisational rules that exist in the context of a modern enterprise. At the same time, IT systems affect the organisation, essentially setting new rules on how the organisation should work. Question/problem: Gathering requirements for an IT system involves understanding the complex rules that govern an organisation. The research question is: How can the holistic properties of organisational rules be conceptualised? Principal ideas/results: This paper introduces the concept of organisational rule systems that may be used to describe complex organisational rules. The concept and its components are presented as a conceptual framework, which in turn is condensed into a conceptual framework diagram. The framework is grounded in a critical literature review. Contribution: The conceptual framework will, as a first step of a wider research agenda, help requirements engineers understand the influence of organisational rules.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司