亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let CMSO denote the counting monadic second order logic of graphs. We give a constructive proof that for some computable function $f$, there is an algorithm $\mathfrak{A}$ that takes as input a CMSO sentence $\varphi$, a positive integer $t$, and a connected graph $G$ of maximum degree at most $\Delta$, and determines, in time $f(|\varphi|,t)\cdot 2^{O(\Delta \cdot t)}\cdot |G|^{O(t)}$, whether $G$ has a supergraph $G'$ of treewidth at most $t$ such that $G'\models \varphi$. The algorithmic metatheorem described above sheds new light on certain unresolved questions within the framework of graph completion algorithms. In particular, using this metatheorem, we provide an explicit algorithm that determines, in time $f(d)\cdot 2^{O(\Delta \cdot d)}\cdot |G|^{O(d)}$, whether a connected graph of maximum degree $\Delta$ has a planar supergraph of diameter at most $d$. Additionally, we show that for each fixed $k$, the problem of determining whether $G$ has an $k$-outerplanar supergraph of diameter at most $d$ is strongly uniformly fixed parameter tractable with respect to the parameter $d$. This result can be generalized in two directions. First, the diameter parameter can be replaced by any contraction-closed effectively CMSO-definable parameter $\mathbf{p}$. Examples of such parameters are vertex-cover number, dominating number, and many other contraction-bidimensional parameters. In the second direction, the planarity requirement can be relaxed to bounded genus, and more generally, to bounded local treewidth.

相關內容

The median of a graph $G$ with weighted vertices is the set of all vertices $x$ minimizing the sum of weighted distances from $x$ to the vertices of $G$. For any integer $p\ge 2$, we characterize the graphs in which, with respect to any non-negative weights, median sets always induce connected subgraphs in the $p$th power $G^p$ of $G$. This extends some characterizations of graphs with connected medians (case $p=1$) provided by Bandelt and Chepoi (2002). The characteristic conditions can be tested in polynomial time for any $p$. We also show that several important classes of graphs in metric graph theory, including bridged graphs (and thus chordal graphs), graphs with convex balls, bucolic graphs, and bipartite absolute retracts, have $G^2$-connected medians. Extending the result of Bandelt and Chepoi that basis graphs of matroids are graphs with connected medians, we characterize the isometric subgraphs of Johnson graphs and of halved-cubes with connected medians.

Determining the matrix multiplication exponent $\omega$ is one of the greatest open problems in theoretical computer science. We show that it is impossible to prove $\omega = 2$ by starting with structure tensors of modules of fixed degree and using arbitrary restrictions. It implies that the same is impossible by starting with $1_A$-generic non-diagonal tensors of fixed size with minimal border rank. This generalizes the work of Bl\"aser and Lysikov [3]. Our methods come from both commutative algebra and complexity theory.

A homomorphism $f$ from a guest graph $G$ to a host graph $H$ is locally bijective, injective or surjective if for every $u\in V(G)$, the restriction of $f$ to the neighbourhood of $u$ is bijective, injective or surjective, respectively. The corresponding decision problems, LBHOM, LIHOM and LSHOM, are well studied both on general graphs and on special graph classes. Apart from complexity results when the problems are parameterized by the treewidth and maximum degree of the guest graph, the three problems still lack a thorough study of their parameterized complexity. This paper fills this gap: we prove a number of new FPT, W[1]-hard and para-NP-complete results by considering a hierarchy of parameters of the guest graph $G$. For our FPT results, we do this through the development of a new algorithmic framework that involves a general ILP model. To illustrate the applicability of the new framework, we also use it to prove FPT results for the Role Assignment problem, which originates from social network theory and is closely related to locally surjective homomorphisms.

We study vulnerability of a uniformly distributed random graph to an attack by an adversary who aims for a global change of the distribution while being able to make only a local change in the graph. We call a graph property $A$ anti-stochastic if the probability that a random graph $G$ satisfies $A$ is small but, with high probability, there is a small perturbation transforming $G$ into a graph satisfying $A$. While for labeled graphs such properties are easy to obtain from binary covering codes, the existence of anti-stochastic properties for unlabeled graphs is not so evident. If an admissible perturbation is either the addition or the deletion of one edge, we exhibit an anti-stochastic property that is satisfied by a random unlabeled graph of order $n$ with probability $(2+o(1))/n^2$, which is as small as possible. We also express another anti-stochastic property in terms of the degree sequence of a graph. This property has probability $(2+o(1))/(n\ln n)$, which is optimal up to factor of 2.

Recurrent Neural Network (RNN) is a fundamental structure in deep learning. Recently, some works study the training process of over-parameterized neural networks, and show that over-parameterized networks can learn functions in some notable concept classes with a provable generalization error bound. In this paper, we analyze the training and generalization for RNNs with random initialization, and provide the following improvements over recent works: 1) For a RNN with input sequence $x=(X_1,X_2,...,X_L)$, previous works study to learn functions that are summation of $f(\beta^T_lX_l)$ and require normalized conditions that $||X_l||\leq\epsilon$ with some very small $\epsilon$ depending on the complexity of $f$. In this paper, using detailed analysis about the neural tangent kernel matrix, we prove a generalization error bound to learn such functions without normalized conditions and show that some notable concept classes are learnable with the numbers of iterations and samples scaling almost-polynomially in the input length $L$. 2) Moreover, we prove a novel result to learn N-variables functions of input sequence with the form $f(\beta^T[X_{l_1},...,X_{l_N}])$, which do not belong to the "additive" concept class, i,e., the summation of function $f(X_l)$. And we show that when either $N$ or $l_0=\max(l_1,..,l_N)-\min(l_1,..,l_N)$ is small, $f(\beta^T[X_{l_1},...,X_{l_N}])$ will be learnable with the number iterations and samples scaling almost-polynomially in the input length $L$.

Given a graph $G = (V,E)$, a threshold function $t~ :~ V \rightarrow \mathbb{N}$ and an integer $k$, we study the Harmless Set problem, where the goal is to find a subset of vertices $S \subseteq V$ of size at least $k$ such that every vertex $v\in V$ has less than $t(v)$ neighbors in $S$. We enhance our understanding of the problem from the viewpoint of parameterized complexity. Our focus lies on parameters that measure the structural properties of the input instance. We show that the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as the feedback vertex set number, pathwidth, treedepth, and even the size of a minimum vertex deletion set into graphs of pathwidth and treedepth at most three. On dense graphs, we show that the problem is W[1]-hard parameterized by cluster vertex deletion number. We also show that the Harmless Set problem with majority thresholds is W[1]-hard when parameterized by the treewidth of the input graph. We prove that the Harmless Set problem can be solved in polynomial time on graph with bounded cliquewidth. On the positive side, we obtain fixed-parameter algorithms for the problem with respect to neighbourhood diversity, twin cover and vertex integrity of the input graph. We show that the problem parameterized by the solution size is fixed parameter tractable on planar graphs. We thereby resolve two open questions stated in C. Bazgan and M. Chopin (2014) concerning the complexity of {\sc Harmless Set} parameterized by the treewidth of the input graph and on planar graphs with respect to the solution size.

We study the complexity of proving that a sparse random regular graph on an odd number of vertices does not have a perfect matching, and related problems involving each vertex being matched some pre-specified number of times. We show that this requires proofs of degree $\Omega(n / \log n)$ in the Polynomial Calculus (over fields of characteristic $\ne 2$) and Sum-of-Squares proof systems, and exponential size in the bounded-depth Frege proof system. This resolves a question by Razborov asking whether the Lov\'asz-Schrijver proof system requires $n^\delta$ rounds to refute these formulas for some $\delta > 0$. The results are obtained by a worst-case to average-case reduction of these formulas relying on a topological embedding theorem which may be of independent interest.

We explicitly construct the quantum field theory corresponding to a general class of deep neural networks encompassing both recurrent and feedforward architectures. We first consider the mean-field theory (MFT) obtained as the leading saddlepoint in the action, and derive the condition for criticality via the largest Lyapunov exponent. We then compute the loop corrections to the correlation function in a perturbative expansion in the ratio of depth $T$ to width $N$, and find a precise analogy with the well-studied $O(N)$ vector model, in which the variance of the weight initializations plays the role of the 't Hooft coupling. In particular, we compute both the $\mathcal{O}(1)$ corrections quantifying fluctuations from typicality in the ensemble of networks, and the subleading $\mathcal{O}(T/N)$ corrections due to finite-width effects. These provide corrections to the correlation length that controls the depth to which information can propagate through the network, and thereby sets the scale at which such networks are trainable by gradient descent. Our analysis provides a first-principles approach to the rapidly emerging NN-QFT correspondence, and opens several interesting avenues to the study of criticality in deep neural networks.

The task of multi-label learning is to predict a set of relevant labels for the unseen instance. Traditional multi-label learning algorithms treat each class label as a logical indicator of whether the corresponding label is relevant or irrelevant to the instance, i.e., +1 represents relevant to the instance and -1 represents irrelevant to the instance. Such label represented by -1 or +1 is called logical label. Logical label cannot reflect different label importance. However, for real-world multi-label learning problems, the importance of each possible label is generally different. For the real applications, it is difficult to obtain the label importance information directly. Thus we need a method to reconstruct the essential label importance from the logical multilabel data. To solve this problem, we assume that each multi-label instance is described by a vector of latent real-valued labels, which can reflect the importance of the corresponding labels. Such label is called numerical label. The process of reconstructing the numerical labels from the logical multi-label data via utilizing the logical label information and the topological structure in the feature space is called Label Enhancement. In this paper, we propose a novel multi-label learning framework called LEMLL, i.e., Label Enhanced Multi-Label Learning, which incorporates regression of the numerical labels and label enhancement into a unified framework. Extensive comparative studies validate that the performance of multi-label learning can be improved significantly with label enhancement and LEMLL can effectively reconstruct latent label importance information from logical multi-label data.

This paper introduces the Hawkes skeleton and the Hawkes graph. These objects summarize the branching structure of a multivariate Hawkes point process in a compact, yet meaningful way. We demonstrate how graph-theoretic vocabulary (`ancestor sets', `parent sets', `connectivity', `walks', `walk weights', ...) is very convenient for the discussion of multivariate Hawkes processes. For example, we reformulate the classic eigenvalue-based subcriticality criterion of multitype branching processes in graph terms. Next to these more terminological contributions, we show how the graph view may be used for the specification and estimation of Hawkes models from large, multitype event streams. Based on earlier work, we give a nonparametric statistical procedure to estimate the Hawkes skeleton and the Hawkes graph from data. We show how the graph estimation may then be used for specifying and fitting parametric Hawkes models. Our estimation method avoids the a priori assumptions on the model from a straighforward MLE-approach and is numerically more flexible than the latter. Our method has two tuning parameters: one controlling numerical complexity, the other one controlling the sparseness of the estimated graph. A simulation study confirms that the presented procedure works as desired. We pay special attention to computational issues in the implementation. This makes our results applicable to high-dimensional event-stream data, such as dozens of event streams and thousands of events per component.

北京阿比特科技有限公司