亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optimal control problems can be solved by first applying the Pontryagin maximum principle, followed by computing a solution of the corresponding unconstrained Hamiltonian dynamical system. In this paper, and to achieve a balance between robustness and efficiency, we learn a reduced Hamiltonian of the unconstrained Hamiltonian. This reduced Hamiltonian is learned by going backward in time and by minimizing the loss function resulting from application of the Pontryagin maximum principle conditions. The robustness of our learning process is then further improved by progressively learning a posterior distribution of reduced Hamiltonians. This leads to a more efficient sampling of the generalized coordinates (position, velocity) of our phase space. Our solution framework applies to not only optimal control problems with finite-dimensional phase (state) spaces but also the infinite dimensional case.

相關內容

Stochastic Hamiltonian partial differential equations, which possess the multi-symplectic conservation law, are an important and fairly large class of systems. The multi-symplectic methods inheriting the geometric features of stochastic Hamiltonian partial differential equations provide numerical approximations with better numerical stability, and are of vital significance for obtaining correct numerical results. In this paper, we propose three novel multi-symplectic methods for stochastic Hamiltonian partial differential equations based on the local radial basis function collocation method, the splitting technique, and the partitioned Runge-Kutta method. Concrete numerical methods are presented for nonlinear stochastic wave equations, stochastic nonlinear Schr\"odinger equations, stochastic Korteweg-de Vries equations and stochastic Maxwell equations. We take stochastic wave equations as examples to perform numerical experiments, which indicate the validity of the proposed methods.

We present a framework for a controlled Markov chain where the state of the chain is only given at chosen observation times and of a cost. Optimal strategies therefore involve the choice of observation times as well as the subsequent control values. We show that the corresponding value function satisfies a dynamic programming principle, which leads to a system of quasi-variational inequalities (QVIs). Next, we give an extension where the model parameters are not known a priori but are inferred from the costly observations by Bayesian updates. We then prove a comparison principle for a larger class of QVIs, which implies uniqueness of solutions to our proposed problem. We utilise penalty methods to obtain arbitrarily accurate solutions. Finally, we perform numerical experiments on three applications which illustrate our framework.

In this work, we investigate stochastic quasi-Newton methods for minimizing a finite sum of cost functions over a decentralized network. In Part I, we develop a general algorithmic framework that incorporates stochastic quasi-Newton approximations with variance reduction so as to achieve fast convergence. At each time each node constructs a local, inexact quasi-Newton direction that asymptotically approaches the global, exact one. To be specific, (i) A local gradient approximation is constructed by using dynamic average consensus to track the average of variance-reduced local stochastic gradients over the entire network; (ii) A local Hessian inverse approximation is assumed to be positive definite with bounded eigenvalues, and how to construct it to satisfy these assumptions will be given in Part II. Compared to the existing decentralized stochastic first-order methods, the proposed general framework introduces the second-order curvature information without incurring extra sampling or communication. With a fixed step size, we establish the conditions under which the proposed general framework linearly converges to an exact optimal solution.

Safety exploration can be regarded as a constrained Markov decision problem where the expected long-term cost is constrained. Previous off-policy algorithms convert the constrained optimization problem into the corresponding unconstrained dual problem by introducing the Lagrangian relaxation technique. However, the cost function of the above algorithms provides inaccurate estimations and causes the instability of the Lagrange multiplier learning. In this paper, we present a novel off-policy reinforcement learning algorithm called Conservative Distributional Maximum a Posteriori Policy Optimization (CDMPO). At first, to accurately judge whether the current situation satisfies the constraints, CDMPO adapts distributional reinforcement learning method to estimate the Q-function and C-function. Then, CDMPO uses a conservative value function loss to reduce the number of violations of constraints during the exploration process. In addition, we utilize Weighted Average Proportional Integral Derivative (WAPID) to update the Lagrange multiplier stably. Empirical results show that the proposed method has fewer violations of constraints in the early exploration process. The final test results also illustrate that our method has better risk control.

In this paper we propose a deep learning based numerical scheme for strongly coupled FBSDE, stemming from stochastic control. It is a modification of the deep BSDE method in which the initial value to the backward equation is not a free parameter, and with a new loss function being the weighted sum of the cost of the control problem, and a variance term which coincides with the means square error in the terminal condition. We show by a numerical example that a direct extension of the classical deep BSDE method to FBSDE, fails for a simple linear-quadratic control problem, and motivate why the new method works. Under regularity and boundedness assumptions on the exact controls of time continuous and time discrete control problems we provide an error analysis for our method. We show empirically that the method converges for three different problems, one being the one that failed for a direct extension of the deep BSDE method.

We propose a reinforcement learning (RL) approach to compute the expression of quasi-stationary distribution. Based on the fixed-point formulation of quasi-stationary distribution, we minimize the KL-divergence of two Markovian path distributions induced by the candidate distribution and the true target distribution. To solve this challenging minimization problem by gradient descent, we apply the reinforcement learning technique by introducing the reward and value functions. We derive the corresponding policy gradient theorem and design an actor-critic algorithm to learn the optimal solution and the value function. The numerical examples of finite state Markov chain are tested to demonstrate the new method.

We develop several deep learning algorithms for approximating families of parametric PDE solutions. The proposed algorithms approximate solutions together with their gradients, which in the context of mathematical finance means that the derivative prices and hedging strategies are computed simulatenously. Having approximated the gradient of the solution one can combine it with a Monte-Carlo simulation to remove the bias in the deep network approximation of the PDE solution (derivative price). This is achieved by leveraging the Martingale Representation Theorem and combining the Monte Carlo simulation with the neural network. The resulting algorithm is robust with respect to quality of the neural network approximation and consequently can be used as a black-box in case only limited a priori information about the underlying problem is available. We believe this is important as neural network based algorithms often require fair amount of tuning to produce satisfactory results. The methods are empirically shown to work for high-dimensional problems (e.g. 100 dimensions). We provide diagnostics that shed light on appropriate network architectures.

Robust model predictive control (MPC) is a well-known control technique for model-based control with constraints and uncertainties. In classic robust tube-based MPC approaches, an open-loop control sequence is computed via periodically solving an online nominal MPC problem, which requires prior model information and frequent access to onboard computational resources. In this paper, we propose an efficient robust MPC solution based on receding horizon reinforcement learning, called r-LPC, for unknown nonlinear systems with state constraints and disturbances. The proposed r-LPC utilizes a Koopman operator-based prediction model obtained off-line from pre-collected input-output datasets. Unlike classic tube-based MPC, in each prediction time interval of r-LPC, we use an actor-critic structure to learn a near-optimal feedback control policy rather than a control sequence. The resulting closed-loop control policy can be learned off-line and deployed online or learned online in an asynchronous way. In the latter case, online learning can be activated whenever necessary; for instance, the safety constraint is violated with the deployed policy. The closed-loop recursive feasibility, robustness, and asymptotic stability are proven under function approximation errors of the actor-critic networks. Simulation and experimental results on two nonlinear systems with unknown dynamics and disturbances have demonstrated that our approach has better or comparable performance when compared with tube-based MPC and LQR, and outperforms a recently developed actor-critic learning approach.

Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

北京阿比特科技有限公司