Recent work has shown that deep neural networks are capable of approximating both value functions and policies in reinforcement learning domains featuring continuous state and action spaces. However, to the best of our knowledge no previous work has succeeded at using deep neural networks in structured (parameterized) continuous action spaces. To fill this gap, this paper focuses on learning within the domain of simulated RoboCup soccer, which features a small set of discrete action types, each of which is parameterized with continuous variables. The best learned agent can score goals more reliably than the 2012 RoboCup champion agent. As such, this paper represents a successful extension of deep reinforcement learning to the class of parameterized action space MDPs.
Wireless Mesh Networks (WMNs) are crucial for various sectors due to their adaptability and scalability, providing robust connectivity where traditional wired networks are impractical. WMNs facilitate smart city initiatives, disaster recovery efforts, and industrial automation, playing a pivotal role in modern networking applications. Their versatility also extends to rural connectivity, highlighting their relevance in diverse scenarios. Recent research in WMNs has focused on optimizing gateway placement and selection to enhance network performance and ensure efficient data transmission. This paper introduces a novel approach to maximize average throughput by strategically positioning gateways within the mesh topology. Inspired by Coulomb's law, which has been used in network analysis, this approach aims to improve network performance through strategic gateway positioning. Comprehensive simulations and analyses demonstrate the effectiveness of the proposed method in enhancing both throughput and network efficiency. By leveraging physics-based models like Coulomb's law, the study offers an objective means to optimize gateway placement, a critical component in WMN design. These findings provide valuable insights for network designers and operators, guiding informed decision-making for gateway deployment across various WMN deployments. This research significantly contributes to the ongoing evolution of WMN optimization strategies, reaffirming the essential role of gateway placement in establishing resilient and efficient wireless communication infrastructures.
Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modeling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling. In this research, we propose a PINN framework with several improvements for forward and inverse problems for ODE systems with a case study application in modelling the dynamics of mosquito populations. The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations. The method offers a simple but effective way to resolve the time causality issue in PINNs by gradually expanding the training time domain until it covers entire domain of interest. As part of a robust evaluation, we conduct experiments using simulated data to evaluate the effectiveness of the approach. Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.
A characterization of the representability of neural networks is relevant to comprehend their success in artificial intelligence. This study investigate two topics on ReLU neural network expressivity and their connection with a conjecture related to the minimum depth required for representing any continuous piecewise linear (CPWL) function. The topics are the minimal depth representation of the sum and max operations, as well as the exploration of polytope neural networks. For the sum operation, we establish a sufficient condition on the minimal depth of the operands to find the minimal depth of the operation. In contrast, regarding the max operation, a comprehensive set of examples is presented, demonstrating that no sufficient conditions, depending solely on the depth of the operands, would imply a minimal depth for the operation. The study also examine the minimal depth relationship between convex CPWL functions. On polytope neural networks, we investigate basic depth properties from Minkowski sums, convex hulls, number of vertices, faces, affine transformations, and indecomposable polytopes. More significant findings include depth characterization of polygons; identification of polytopes with an increasing number of vertices, exhibiting small depth and others with arbitrary large depth; and most notably, the minimal depth of simplices, which is strictly related to the minimal depth conjecture in ReLU networks.
We state the Problem of Knot Identification as a way to achieve consensus in dynamic networks. The network adversary is asynchronous and not oblivious. The network may be disconnected throughout the computation. We determine the necessary and sufficient conditions for the existence of a solution to the Knot Identification Problem: the knots must be observable by all processes and the first observed knot must be the same for all processes. We present an algorithm KIA that solves it. We conduct KIA performance evaluation.
Deep nonparametric regression, characterized by the utilization of deep neural networks to learn target functions, has emerged as a focus of research attention in recent years. Despite considerable progress in understanding convergence rates, the absence of asymptotic properties hinders rigorous statistical inference. To address this gap, we propose a novel framework that transforms the deep estimation paradigm into a platform conducive to conditional mean estimation, leveraging the conditional diffusion model. Theoretically, we develop an end-to-end convergence rate for the conditional diffusion model and establish the asymptotic normality of the generated samples. Consequently, we are equipped to construct confidence regions, facilitating robust statistical inference. Furthermore, through numerical experiments, we empirically validate the efficacy of our proposed methodology.
Hybrid dynamical systems are prevalent in science and engineering to express complex systems with continuous and discrete states. To learn the laws of systems, all previous methods for equation discovery in hybrid systems follow a two-stage paradigm, i.e. they first group time series into small cluster fragments and then discover equations in each fragment separately through methods in non-hybrid systems. Although effective, these methods do not fully take advantage of the commonalities in the shared dynamics of multiple fragments that are driven by the same equations. Besides, the two-stage paradigm breaks the interdependence between categorizing and representing dynamics that jointly form hybrid systems. In this paper, we reformulate the problem and propose an end-to-end learning framework, i.e. Amortized Equation Discovery (AMORE), to jointly categorize modes and discover equations characterizing the dynamics of each mode by all segments of the mode. Experiments on four hybrid and six non-hybrid systems show that our method outperforms previous methods on equation discovery, segmentation, and forecasting.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.