亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the power of randomness in the Number-on-Forehead (NOF) model in communication complexity. We construct an explicit 3-player function $f:[N]^3 \to \{0,1\}$, such that: (i) there exist a randomized NOF protocol computing it that sends a constant number of bits; but (ii) any deterministic or nondeterministic NOF protocol computing it requires sending about $(\log N)^{1/3}$ many bits. This exponentially improves upon the previously best-known such separation. At the core of our proof is an extension of a recent result of the first and third authors on sets of integers without 3-term arithmetic progressions into a non-arithmetic setting.

相關內容

A comprehensive mathematical model of the multiphysics flow of blood and Cerebrospinal Fluid (CSF) in the brain can be expressed as the coupling of a poromechanics system and Stokes' equations: the first describes fluids filtration through the cerebral tissue and the tissue's elastic response, while the latter models the flow of the CSF in the brain ventricles. This model describes the functioning of the brain's waste clearance mechanism, which has been recently discovered to play an essential role in the progress of neurodegenerative diseases. To model the interactions between different scales in the porous medium, we propose a physically consistent coupling between Multi-compartment Poroelasticity (MPE) equations and Stokes' equations. In this work, we introduce a numerical scheme for the discretization of such coupled MPE-Stokes system, employing a high-order discontinuous Galerkin method on polytopal grids to efficiently account for the geometric complexity of the domain. We analyze the stability and convergence of the space semidiscretized formulation, we prove a-priori error estimates, and we present a temporal discretization based on a combination of Newmark's $\beta$-method for the elastic wave equation and the $\theta$-method for the other equations of the model. Numerical simulations carried out on test cases with manufactured solutions validate the theoretical error estimates. We also present numerical results on a two-dimensional slice of a patient-specific brain geometry reconstructed from diagnostic images, to test in practice the advantages of the proposed approach.

Prognostic Health Management aims to predict the Remaining Useful Life (RUL) of degrading components/systems utilizing monitoring data. These RUL predictions form the basis for optimizing maintenance planning in a Predictive Maintenance (PdM) paradigm. We here propose a metric for assessing data-driven prognostic algorithms based on their impact on downstream PdM decisions. The metric is defined in association with a decision setting and a corresponding PdM policy. We consider two typical PdM decision settings, namely component ordering and/or replacement planning, for which we investigate and improve PdM policies that are commonly utilized in the literature. All policies are evaluated via the data-based estimation of the long-run expected maintenance cost per unit time, using monitored run-to-failure experiments. The policy evaluation enables the estimation of the proposed metric. We employ the metric as an objective function for optimizing heuristic PdM policies and algorithms' hyperparameters. The effect of different PdM policies on the metric is initially investigated through a theoretical numerical example. Subsequently, we employ four data-driven prognostic algorithms on a simulated turbofan engine degradation problem, and investigate the joint effect of prognostic algorithm and PdM policy on the metric, resulting in a decision-oriented performance assessment of these algorithms.

We propose a Monte Carlo method to efficiently find, count, and sample abstract triangulations of a given manifold M. The method is based on a biased random walk through all possible triangulations of M (in the Pachner graph), constructed by combining (bi-stellar) moves with suitable chosen accept/reject probabilities (Metropolis-Hastings). Asymptotically, the method guarantees that samples of triangulations are drawn at random from a chosen probability. This enables us not only to sample (rare) triangulations of particular interest but also to estimate the (extremely small) probability of obtaining them when isomorphism types of triangulations are sampled uniformly at random. We implement our general method for surface triangulations and 1-vertex triangulations of 3-manifolds. To showcase its usefulness, we present a number of experiments: (a) we recover asymptotic growth rates for the number of isomorphism types of simplicial triangulations of the 2-dimensional sphere; (b) we experimentally observe that the growth rate for the number of isomorphism types of 1-vertex triangulations of the 3-dimensional sphere appears to be singly exponential in the number of their tetrahedra; and (c) we present experimental evidence that a randomly chosen isomorphism type of 1-vertex n-tetrahedra 3-sphere triangulation, for n tending to infinity, almost surely shows a fixed edge-degree distribution which decays exponentially for large degrees, but shows non-monotonic behaviour for small degrees.

Box-supervised polyp segmentation attracts increasing attention for its cost-effective potential. Existing solutions often rely on learning-free methods or pretrained models to laboriously generate pseudo masks, triggering Dice constraint subsequently. In this paper, we found that a model guided by the simplest box-filled masks can accurately predict polyp locations/sizes, but suffers from shape collapsing. In response, we propose two innovative learning fashions, Improved Box-dice (IBox) and Contrastive Latent-Anchors (CLA), and combine them to train a robust box-supervised model IBoxCLA. The core idea behind IBoxCLA is to decouple the learning of location/size and shape, allowing for focused constraints on each of them. Specifically, IBox transforms the segmentation map into a proxy map using shape decoupling and confusion-region swapping sequentially. Within the proxy map, shapes are disentangled, while locations/sizes are encoded as box-like responses. By constraining the proxy map instead of the raw prediction, the box-filled mask can well supervise IBoxCLA without misleading its shape learning. Furthermore, CLA contributes to shape learning by generating two types of latent anchors, which are learned and updated using momentum and segmented polyps to steadily represent polyp and background features. The latent anchors facilitate IBoxCLA to capture discriminative features within and outside boxes in a contrastive manner, yielding clearer boundaries. We benchmark IBoxCLA on five public polyp datasets. The experimental results demonstrate the competitive performance of IBoxCLA compared to recent fully-supervised polyp segmentation methods, and its superiority over other box-supervised state-of-the-arts with a relative increase of overall mDice and mIoU by at least 6.5% and 7.5%, respectively.

This paper presents a new weak Galerkin (WG) method for elliptic interface problems on general curved polygonal partitions. The method's key innovation lies in its ability to transform the complex interface jump condition into a more manageable Dirichlet boundary condition, simplifying the theoretical analysis significantly. The numerical scheme is designed by using locally constructed weak gradient on the curved polygonal partitions. We establish error estimates of optimal order for the numerical approximation in both discrete $H^1$ and $L^2$ norms. Additionally, we present various numerical results that serve to illustrate the robust numerical performance of the proposed WG interface method.

This paper studies ensembling in the era of Large Vision-Language Models (LVLMs). Ensembling is a classical method to combine different models to get increased performance. In the recent work on Encyclopedic-VQA the authors examine a wide variety of models to solve their task: from vanilla LVLMs, to models including the caption as extra context, to models augmented with Lens-based retrieval of Wikipedia pages. Intuitively these models are highly complementary, which should make them ideal for ensembling. Indeed, an oracle experiment shows potential gains from 48.8% accuracy (the best single model) all the way up to 67% (best possible ensemble). So it is a trivial exercise to create an ensemble with substantial real gains. Or is it?

Markov chain Monte Carlo (MCMC) is a commonly used method for approximating expectations with respect to probability distributions. Uncertainty assessment for MCMC estimators is essential in practical applications. Moreover, for multivariate functions of a Markov chain, it is important to estimate not only the auto-correlation for each component but also to estimate cross-correlations, in order to better assess sample quality, improve estimates of effective sample size, and use more effective stopping rules. Berg and Song [2022] introduced the moment least squares (momentLS) estimator, a shape-constrained estimator for the autocovariance sequence from a reversible Markov chain, for univariate functions of the Markov chain. Based on this sequence estimator, they proposed an estimator of the asymptotic variance of the sample mean from MCMC samples. In this study, we propose novel autocovariance sequence and asymptotic variance estimators for Markov chain functions with multiple components, based on the univariate momentLS estimators from Berg and Song [2022]. We demonstrate strong consistency of the proposed auto(cross)-covariance sequence and asymptotic variance matrix estimators. We conduct empirical comparisons of our method with other state-of-the-art approaches on simulated and real-data examples, using popular samplers including the random-walk Metropolis sampler and the No-U-Turn sampler from STAN.

Controlling spurious oscillations is crucial for designing reliable numerical schemes for hyperbolic conservation laws. This paper proposes a novel, robust, and efficient oscillation-eliminating discontinuous Galerkin (OEDG) method on general meshes, motivated by the damping technique in [Lu, Liu, and Shu, SIAM J. Numer. Anal., 59:1299-1324, 2021]. The OEDG method incorporates an OE procedure after each Runge-Kutta stage, devised by alternately evolving conventional semidiscrete DG scheme and a damping equation. A novel damping operator is carefully designed to possess scale-invariant and evolution-invariant properties. We rigorously prove optimal error estimates of the fully discrete OEDG method for linear scalar conservation laws. This might be the first generic fully-discrete error estimates for nonlinear DG schemes with automatic oscillation control mechanism. The OEDG method exhibits many notable advantages. It effectively eliminates spurious oscillations for challenging problems across various scales and wave speeds, without problem-specific parameters. It obviates the need for characteristic decomposition in hyperbolic systems. It retains key properties of conventional DG method, such as conservation, optimal convergence rates, and superconvergence. Moreover, it remains stable under normal CFL condition. The OE procedure is non-intrusive, facilitating integration into existing DG codes as an independent module. Its implementation is easy and efficient, involving only simple multiplications of modal coefficients by scalars. The OEDG approach provides new insights into the damping mechanism for oscillation control. It reveals the role of damping operator as a modal filter and establishes close relations between the damping and spectral viscosity techniques. Extensive numerical results confirm the theoretical analysis and validate the effectiveness and advantages of the OEDG method.

We study time-dependent mediators in survival analysis using a treatment separation approach due to Didelez [2019] and based on earlier work by Robins and Richardson [2011]. This approach avoids nested counterfactuals and crossworld assumptions which are otherwise common in mediation analysis. The causal model of treatment, mediators, covariates, confounders and outcome is represented by causal directed acyclic graphs (DAGs). However, the DAGs tend to be very complex when we have measurements at a large number of time points. We therefore suggest using so-called rolled graphs in which a node represents an entire coordinate process instead of a single random variable, leading us to far simpler graphical representations. The rolled graphs are not necessarily acyclic; they can be analyzed by $\delta$-separation which is the appropriate graphical separation criterion in this class of graphs and analogous to $d$-separation. In particular, $\delta$-separation is a graphical tool for evaluating if the conditions of the mediation analysis are met or if unmeasured confounders influence the estimated effects. We also state a mediational g-formula. This is similar to the approach in Vansteelandt et al. [2019] although that paper has a different conceptual basis. Finally, we apply this framework to a statistical model based on a Cox model with an added treatment effect.survival analysis; mediation; causal inference; graphical models; local independence graphs

The emergence of complex structures in the systems governed by a simple set of rules is among the most fascinating aspects of Nature. The particularly powerful and versatile model suitable for investigating this phenomenon is provided by cellular automata, with the Game of Life being one of the most prominent examples. However, this simplified model can be too limiting in providing a tool for modelling real systems. To address this, we introduce and study an extended version of the Game of Life, with the dynamical process governing the rule selection at each step. We show that the introduced modification significantly alters the behaviour of the game. We also demonstrate that the choice of the synchronization policy can be used to control the trade-off between the stability and the growth in the system.

北京阿比特科技有限公司