亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $G$ be a graph of order $n$. A classical upper bound for the domination number of a graph $G$ having no isolated vertices is $\lfloor\frac{n}{2}\rfloor$. However, for several families of graphs, we have $\gamma(G) \le \lfloor\sqrt{n}\rfloor$ which gives a substantially improved upper bound. In this paper, we give a condition necessary for a graph $G$ to have $\gamma(G) \le \lfloor\sqrt{n}\rfloor$, and some conditions sufficient for a graph $G$ to have $\gamma(G) \le \lfloor\sqrt{n}\rfloor$. We also present a characterization of all connected graphs $G$ of order $n$ with $\gamma(G) = \lfloor\sqrt{n}\rfloor$. Further, we prove that for a graph $G$ not satisfying $rad(G)=diam(G)=rad(\overline{G})=diam(\overline{G})=2$, deciding whether $\gamma(G) \le \lfloor\sqrt{n}\rfloor$ or $\gamma(\overline{G}) \le \lfloor\sqrt{n}\rfloor$ can be done in polynomial time. We conjecture that this decision problem can be solved in polynomial time for any graph $G$.

相關內容

New geometric methods for fast evaluation of derivatives of polynomial and rational B\'{e}zier curves are proposed. They apply an algorithm for evaluating polynomial or rational B\'{e}zier curves, which was recently given by the authors. Numerical tests show that the new approach is more efficient than the methods which use the famous de Casteljau algorithm. The algorithms work well even for high-order derivatives of rational B\'{e}zier curves of high degrees.

We describe a `discretize-then-relax' strategy to globally minimize integral functionals over functions $u$ in a Sobolev space subject to Dirichlet boundary conditions. The strategy applies whenever the integral functional depends polynomially on $u$ and its derivatives, even if it is nonconvex. The `discretize' step uses a bounded finite element scheme to approximate the integral minimization problem with a convergent hierarchy of polynomial optimization problems over a compact feasible set, indexed by the decreasing size $h$ of the finite element mesh. The `relax' step employs sparse moment-sum-of-squares relaxations to approximate each polynomial optimization problem with a hierarchy of convex semidefinite programs, indexed by an increasing relaxation order $\omega$. We prove that, as $\omega\to\infty$ and $h\to 0$, solutions of such semidefinite programs provide approximate minimizers that converge in a suitable sense (including in certain $L^p$ norms) to the global minimizer of the original integral functional if it is unique. We also report computational experiments showing that our numerical strategy works well even when technical conditions required by our theoretical analysis are not satisfied.

A graph $G = (V, E)$ is said to be word-representable if a word $w$ can be formed using the letters of the alphabet $V$ such that for every pair of vertices $x$ and $y$, $xy \in E$ if and only if $x$ and $y$ alternate in $w$. Gaetz and Ji have recently introduced the notion of minimum length word-representants for word-representable graphs. They have also determined the minimum possible length of the word-representants for certain classes of graphs, such as trees and cycles. It is know that Cartesian and Rooted products preserve word-representability. Moreover, Broere constructed a uniform word representing the Cartesian product of $G$ and $K_n$ using occurrence based functions. In this paper, we study the minimum length of word-representants for Cartesian and Rooted products using morphism and occurrence based function, respectively. Also, we solve an open problem posed by Broere in his master thesis. This problem asks to construct a word for the Cartesian product of two arbitrary word-representable graphs.

We explore the theoretical possibility of learning $d$-dimensional targets with $W$-parameter models by gradient flow (GF) when $W<d$. Our main result shows that if the targets are described by a particular $d$-dimensional probability distribution, then there exist models with as few as two parameters that can learn the targets with arbitrarily high success probability. On the other hand, we show that for $W<d$ there is necessarily a large subset of GF-non-learnable targets. In particular, the set of learnable targets is not dense in $\mathbb R^d$, and any subset of $\mathbb R^d$ homeomorphic to the $W$-dimensional sphere contains non-learnable targets. Finally, we observe that the model in our main theorem on almost guaranteed two-parameter learning is constructed using a hierarchical procedure and as a result is not expressible by a single elementary function. We show that this limitation is essential in the sense that such learnability can be ruled out for a large class of elementary functions.

We consider the additive version of the matrix denoising problem, where a random symmetric matrix $S$ of size $n$ has to be inferred from the observation of $Y=S+Z$, with $Z$ an independent random matrix modeling a noise. For prior distributions of $S$ and $Z$ that are invariant under conjugation by orthogonal matrices we determine, using results from first and second order free probability theory, the Bayes-optimal (in terms of the mean square error) polynomial estimators of degree at most $D$, asymptotically in $n$, and show that as $D$ increases they converge towards the estimator introduced by Bun, Allez, Bouchaud and Potters in [IEEE Transactions on Information Theory {\bf 62}, 7475 (2016)]. We conjecture that this optimality holds beyond strictly orthogonally invariant priors, and provide partial evidences of this universality phenomenon when $S$ is an arbitrary Wishart matrix and $Z$ is drawn from the Gaussian Orthogonal Ensemble, a case motivated by the related extensive rank matrix factorization problem.

Let $1<t<n$ be integers, where $t$ is a divisor of $n$. An R-$q^t$-partially scattered polynomial is a $\mathbb F_q$-linearized polynomial $f$ in $\mathbb F_{q^n}[X]$ that satisfies the condition that for all $x,y\in\mathbb F_{q^n}^*$ such that $x/y\in\mathbb F_{q^t}$, if $f(x)/x=f(y)/y$, then $x/y\in\mathbb F_q$; $f$ is called scattered if this implication holds for all $x,y\in\mathbb F_{q^n}^*$. Two polynomials in $\mathbb F_{q^n}[X]$ are said to be equivalent if their graphs are in the same orbit under the action of the group $\Gamma L(2,q^n)$. For $n>8$ only three families of scattered polynomials in $\mathbb F_{q^n}[X]$ are known: $(i)$~monomials of pseudoregulus type, $(ii)$~binomials of Lunardon-Polverino type, and $(iii)$~a family of quadrinomials defined in [1,10] and extended in [8,13]. In this paper we prove that the polynomial $\varphi_{m,q^J}=X^{q^{J(t-1)}}+X^{q^{J(2t-1)}}+m(X^{q^J}-X^{q^{J(t+1)}})\in\mathbb F_{q^{2t}}[X]$, $q$ odd, $t\ge3$ is R-$q^t$-partially scattered for every value of $m\in\mathbb F_{q^t}^*$ and $J$ coprime with $2t$. Moreover, for every $t>4$ and $q>5$ there exist values of $m$ for which $\varphi_{m,q}$ is scattered and new with respect to the polynomials mentioned in $(i)$, $(ii)$ and $(iii)$ above. The related linear sets are of $\Gamma L$-class at least two.

A uniform $k$-{\sc dag} generalizes the uniform random recursive tree by picking $k$ parents uniformly at random from the existing nodes. It starts with $k$ ''roots''. Each of the $k$ roots is assigned a bit. These bits are propagated by a noisy channel. The parents' bits are flipped with probability $p$, and a majority vote is taken. When all nodes have received their bits, the $k$-{\sc dag} is shown without identifying the roots. The goal is to estimate the majority bit among the roots. We identify the threshold for $p$ as a function of $k$ below which the majority rule among all nodes yields an error $c+o(1)$ with $c<1/2$. Above the threshold the majority rule errs with probability $1/2+o(1)$.

Let $G$ be a simple graph with adjacency matrix $A(G)$, signless Laplacian matrix $Q(G)$, degree diagonal matrix $D(G)$ and let $l(G)$ be the line graph of $G$. In 2017, Nikiforov defined the $A_\alpha$-matrix of $G$, $A_\alpha(G)$, as a linear convex combination of $A(G)$ and $D(G)$, the following way, $A_\alpha(G):=\alpha A(G)+(1-\alpha)D(G),$ where $\alpha\in[0,1]$. In this paper, we present some bounds for the eigenvalues of $A_\alpha(G)$ and for the largest and smallest eigenvalues of $A_\alpha(l(G))$. Extremal graphs attaining some of these bounds are characterized.

The fixed length Levenshtein (FLL) distance between two words $\mathbf{x,y} \in \mathbb{Z}_m^n$ is the smallest integer $t$ such that $\mathbf{x}$ can be transformed to $\mathbf{y}$ by $t$ insertions and $t$ deletions. The size of a ball in FLL metric is a fundamental but challenging problem. Very recently, Bar-Lev, Etzion, and Yaakobi explicitly determined the minimum, maximum and average sizes of the FLL balls with radius one. In this paper, based on these results, we further prove that the size of the FLL balls with radius one is highly concentrated around its mean by Azuma's inequality.

Three types of the Parikh mapping are introduced, namely, alphabetic, alphabetic-basis and basis. Explicit expressions for attractors of the k-th order in bases n >= 8, including countable ones, are found. Properties for the alphabetic, alphabetic-basis and basis Parikh vectors are given at each step of the Parikh mapping. The maximum number of iterations leading to attractors of the k-th order in the basis n is determined.

北京阿比特科技有限公司