Modern Reinforcement Learning (RL) algorithms are able to outperform humans in a wide variety of tasks. Multi-agent reinforcement learning (MARL) settings present additional challenges, and successful cooperation in mixed-motive groups of agents depends on a delicate balancing act between individual and group objectives. Social conventions and norms, often inspired by human institutions, are used as tools for striking this balance. In this paper, we examine a fundamental, well-studied social convention that underlies cooperation in both animal and human societies: dominance hierarchies. We adapt the ethological theory of dominance hierarchies to artificial agents, borrowing the established terminology and definitions with as few amendments as possible. We demonstrate that populations of RL agents, operating without explicit programming or intrinsic rewards, can invent, learn, enforce, and transmit a dominance hierarchy to new populations. The dominance hierarchies that emerge have a similar structure to those studied in chickens, mice, fish, and other species.
Hyperspectral 3D imaging aims to acquire both depth and spectral information of a scene. However, existing methods are either prohibitively expensive and bulky or compromise on spectral and depth accuracy. In this work, we present Dispersed Structured Light (DSL), a cost-effective and compact method for accurate hyperspectral 3D imaging. DSL modifies a traditional projector-camera system by placing a sub-millimeter thick diffraction grating film front of the projector. The grating disperses structured light based on light wavelength. To utilize the dispersed structured light, we devise a model for dispersive projection image formation and a per-pixel hyperspectral 3D reconstruction method. We validate DSL by instantiating a compact experimental prototype. DSL achieves spectral accuracy of 18.8nm full-width half-maximum (FWHM) and depth error of 1mm. We demonstrate that DSL outperforms prior work on practical hyperspectral 3D imaging. DSL promises accurate and practical hyperspectral 3D imaging for diverse application domains, including computer vision and graphics, cultural heritage, geology, and biology.
We conducted a survey of 135 software engineering (SE) practitioners to understand how they use Generative AI-based chatbots like ChatGPT for SE tasks. We find that they want to use ChatGPT for SE tasks like software library selection but often worry about the truthfulness of ChatGPT responses. We developed a suite of techniques and a tool called CID (ChatGPT Incorrectness Detector) to automatically test and detect the incorrectness in ChatGPT responses. CID is based on the iterative prompting to ChatGPT by asking it contextually similar but textually divergent questions (using an approach that utilizes metamorphic relationships in texts). The underlying principle in CID is that for a given question, a response that is different from other responses (across multiple incarnations of the question) is likely an incorrect response. In a benchmark study of library selection, we show that CID can detect incorrect responses from ChatGPT with an F1-score of 0.74 - 0.75.
We analyze the behavior of stochastic approximation algorithms where iterates, in expectation, progress towards an objective at each step. When progress is proportional to the step size of the algorithm, we prove exponential concentration bounds. These tail-bounds contrast asymptotic normality results, which are more frequently associated with stochastic approximation. The methods that we develop rely on a geometric ergodicity proof. This extends a result on Markov chains due to Hajek (1982) to the area of stochastic approximation algorithms. We apply our results to several different Stochastic Approximation algorithms, specifically Projected Stochastic Gradient Descent, Kiefer-Wolfowitz and Stochastic Frank-Wolfe algorithms. When applicable, our results prove faster $O(1/t)$ and linear convergence rates for Projected Stochastic Gradient Descent with a non-vanishing gradient.
Performance of large language models (LLMs) may vary with different prompts or instructions of even the same task. One commonly recognized factor for this phenomenon is the model's familiarity with the given prompt or instruction, which is typically estimated by its perplexity. However, finding the prompt with the lowest perplexity is challenging, given the enormous space of possible prompting phrases. In this paper, we propose monotonic paraphrasing (MonoPara), an end-to-end decoding strategy that paraphrases given prompts or instructions into their lower perplexity counterparts based on an ensemble of a paraphrase LM for prompt (or instruction) rewriting, and a target LM (i.e. the prompt or instruction executor) that constrains the generation for lower perplexity. The ensemble decoding process can efficiently paraphrase the original prompt without altering its semantic meaning, while monotonically decreasing the perplexity of each generation as calculated by the target LM. We explore in detail both greedy and search-based decoding as two alternative decoding schemes of MonoPara. Notably, MonoPara does not require any training and can monotonically lower the perplexity of the paraphrased prompt or instruction, leading to improved performance of zero-shot LM prompting as evaluated on a wide selection of tasks. In addition, MonoPara is also shown to effectively improve LMs' generalization on perturbed and unseen task instructions.
Large language models(LLM) are pre-trained on extensive corpora to learn facts and human cognition which contain human preferences. However, this process can inadvertently lead to these models acquiring biases and stereotypes prevalent in society. Prior research has typically tackled the issue of bias through a one-dimensional perspective, concentrating either on locating or mitigating it. This limited perspective has created obstacles in facilitating research on bias to synergistically complement and progressively build upon one another. In this study, we integrate the processes of locating and mitigating bias within a unified framework. Initially, we use causal mediation analysis to trace the causal effects of different components' activation within a large language model. Building on this, we propose the LSDM (Least Square Debias Method), a knowledge-editing based method for mitigating gender bias in occupational pronouns, and compare it against two baselines on three gender bias datasets and seven knowledge competency test datasets. The experimental results indicate that the primary contributors to gender bias are the bottom MLP modules acting on the last token of occupational pronouns and the top attention module acting on the final word in the sentence. Furthermore, LSDM mitigates gender bias in the model more effectively than the other baselines, while fully preserving the model's capabilities in all other aspects.
Robot Imitation Learning (IL) is a widely used method for training robots to perform manipulation tasks that involve mimicking human demonstrations to acquire skills. However, its practicality has been limited due to its requirement that users be trained in operating real robot arms to provide demonstrations. This paper presents an innovative solution: an Augmented Reality (AR)-assisted framework for demonstration collection, empowering non-roboticist users to produce demonstrations for robot IL using devices like the HoloLens 2. Our framework facilitates scalable and diverse demonstration collection for real-world tasks. We validate our approach with experiments on three classical robotics tasks: reach, push, and pick-and-place. The real robot performs each task successfully while replaying demonstrations collected via AR.
Graph Convolutional Network (GCN) has achieved extraordinary success in learning effective task-specific representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for a target object, which hinders both effectiveness and interpretability; (2) they often need to generate intermediate meta-path based dense graphs, which leads to high computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation first, followed by type-level aggregation. The novel architecture can automatically extract useful meta-paths for each object from all possible meta-paths (within a length limit), which brings good model interpretability. It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention. We provide theoretical analysis about the proposed ie-HGCN in terms of evaluating the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on three real network datasets demonstrate the superiority of ie-HGCN over the state-of-the-art methods.
Weakly supervised phrase grounding aims at learning region-phrase correspondences using only image-sentence pairs. A major challenge thus lies in the missing links between image regions and sentence phrases during training. To address this challenge, we leverage a generic object detector at training time, and propose a contrastive learning framework that accounts for both region-phrase and image-sentence matching. Our core innovation is the learning of a region-phrase score function, based on which an image-sentence score function is further constructed. Importantly, our region-phrase score function is learned by distilling from soft matching scores between the detected object class names and candidate phrases within an image-sentence pair, while the image-sentence score function is supervised by ground-truth image-sentence pairs. The design of such score functions removes the need of object detection at test time, thereby significantly reducing the inference cost. Without bells and whistles, our approach achieves state-of-the-art results on the task of visual phrase grounding, surpassing previous methods that require expensive object detectors at test time.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.