亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A dynamic mean field theory is developed for finite state and action Bayesian reinforcement learning in the large state space limit. In an analogy with statistical physics, the Bellman equation is studied as a disordered dynamical system; the Markov decision process transition probabilities are interpreted as couplings and the value functions as deterministic spins that evolve dynamically. Thus, the mean-rewards and transition probabilities are considered to be quenched random variables. The theory reveals that, under certain assumptions, the state-action values are statistically independent across state-action pairs in the asymptotic state space limit, and provides the form of the distribution exactly. The results hold in the finite and discounted infinite horizon settings, for both value iteration and policy evaluation. The state-action value statistics can be computed from a set of mean field equations, which we call dynamic mean field programming (DMFP). For policy evaluation the equations are exact. For value iteration, approximate equations are obtained by appealing to extreme value theory or bounds. The result provides analytic insight into the statistical structure of tabular reinforcement learning, for example revealing the conditions under which reinforcement learning is equivalent to a set of independent multi-armed bandit problems.

相關內容

The efficient representation of random fields on geometrically complex domains is crucial for Bayesian modelling in engineering and machine learning. Today's prevalent random field representations are either intended for unbounded domains or are too restrictive in terms of possible field properties. Because of these limitations, techniques leveraging the historically established link between stochastic PDEs (SPDEs) and random fields have been gaining interest. The SPDE representation is especially appealing for engineering applications which already have a finite element discretisation for solving the physical conservation equations. In contrast to the dense covariance matrix of a random field, its inverse, the precision matrix, is usually sparse and equal to the stiffness matrix of an elliptic SPDE. We use the SPDE representation to develop a scalable framework for large-scale statistical finite element analysis and Gaussian process (GP) regression on complex geometries. The statistical finite element method (statFEM) introduced by Girolami et al. (2022) is a novel approach for synthesising measurement data and finite element models. In both statFEM and GP regression, we use the SPDE formulation to obtain the relevant prior probability densities with a sparse precision matrix. The properties of the priors are governed by the parameters and possibly fractional order of the SPDE so that we can model on bounded domains and manifolds anisotropic, non-stationary random fields with arbitrary smoothness. The observation models for statFEM and GP regression are such that the posterior probability densities are Gaussians with a closed-form mean and precision. The respective mean vector and precision matrix and can be evaluated using only sparse matrix operations. We demonstrate the versatility of the proposed framework and its convergence properties with Poisson and thin-shell examples.

This work considers Bayesian experimental design for the inverse boundary value problem of linear elasticity in a two-dimensional setting. The aim is to optimize the positions of compactly supported pressure activations on the boundary of the examined body in order to maximize the value of the resulting boundary deformations as data for the inverse problem of reconstructing the Lam\'e parameters inside the object. We resort to a linearized measurement model and adopt the framework of Bayesian experimental design, under the assumption that the prior and measurement noise distributions are mutually independent Gaussians. This enables the use of the standard Bayesian A-optimality criterion for deducing optimal positions for the pressure activations. The (second) derivatives of the boundary measurements with respect to the Lam\'e parameters and the positions of the boundary pressure activations are deduced to allow minimizing the corresponding objective function, i.e., the trace of the covariance matrix of the posterior distribution, by a gradient-based optimization algorithm. Two-dimensional numerical experiments are performed to demonstrate the functionality of our approach.

The smoothing distribution of dynamic probit models with Gaussian state dynamics was recently proved to belong to the unified skew-normal family. Although this is computationally tractable in small-to-moderate settings, it may become computationally impractical in higher dimensions. In this work, adapting a recent more general class of expectation propagation (EP) algorithms, we derive an efficient EP routine to perform inference for such a distribution. We show that the proposed approximation leads to accuracy gains over available approximate algorithms in a financial illustration.

We extend the error bounds from [SIMAX, Vol. 43, Iss. 2, pp. 787-811 (2022)] for the Lanczos method for matrix function approximation to the block algorithm. Numerical experiments suggest that our bounds are fairly robust to changing block size and have the potential for use as a practical stopping criteria. Further experiments work towards a better understanding of how certain hyperparameters should be chosen in order to maximize the quality of the error bounds, even in the previously studied block-size one case.

Applying parallel-in-time algorithms to multiscale Hamiltonian systems to obtain stable long time simulations is very challenging. In this paper, we present novel data-driven methods aimed at improving the standard parareal algorithm developed by Lion, Maday, and Turinici in 2001, for multiscale Hamiltonian systems. The first method involves constructing a correction operator to improve a given inaccurate coarse solver through solving a Procrustes problem using data collected online along parareal trajectories. The second method involves constructing an efficient, high-fidelity solver by a neural network trained with offline generated data. For the second method, we address the issues of effective data generation and proper loss function design based on the Hamiltonian function. We show proof-of-concept by applying the proposed methods to a Fermi-Pasta-Ulum (FPU) problem. The numerical results demonstrate that the Procrustes parareal method is able to produce solutions that are more stable in energy compared to the standard parareal. The neural network solver can achieve comparable or better runtime performance compared to numerical solvers of similar accuracy. When combined with the standard parareal algorithm, the improved neural network solutions are slightly more stable in energy than the improved numerical coarse solutions.

While model selection is a well-studied topic in parametric and nonparametric regression or density estimation, selection of possibly high-dimensional nuisance parameters in semiparametric problems is far less developed. In this paper, we propose a selective machine learning framework for making inferences about a finite-dimensional functional defined on a semiparametric model, when the latter admits a doubly robust estimating function and several candidate machine learning algorithms are available for estimating the nuisance parameters. We introduce a new selection criterion aimed at bias reduction in estimating the functional of interest based on a novel definition of pseudo-risk inspired by the double robustness property. Intuitively, the proposed criterion selects a pair of learners with the smallest pseudo-risk, so that the estimated functional is least sensitive to perturbations of a nuisance parameter. We establish an oracle property for a multi-fold cross-validation version of the new selection criterion which states that our empirical criterion performs nearly as well as an oracle with a priori knowledge of the pseudo-risk for each pair of candidate learners. Finally, we apply the approach to model selection of a semiparametric estimator of average treatment effect given an ensemble of candidate machine learners to account for confounding in an observational study which we illustrate in simulations and a data application.

Ordinary differential equations (ODEs), via their induced flow maps, provide a powerful framework to parameterize invertible transformations for the purpose of representing complex probability distributions. While such models have achieved enormous success in machine learning, particularly for generative modeling and density estimation, little is known about their statistical properties. This work establishes the first general nonparametric statistical convergence analysis for distribution learning via ODE models trained through likelihood maximization. We first prove a convergence theorem applicable to arbitrary velocity field classes $\mathcal{F}$ satisfying certain simple boundary constraints. This general result captures the trade-off between approximation error (`bias') and the complexity of the ODE model (`variance'). We show that the latter can be quantified via the $C^1$-metric entropy of the class $\mathcal F$. We then apply this general framework to the setting of $C^k$-smooth target densities, and establish nearly minimax-optimal convergence rates for two relevant velocity field classes $\mathcal F$: $C^k$ functions and neural networks. The latter is the practically important case of neural ODEs. Our proof techniques require a careful synthesis of (i) analytical stability results for ODEs, (ii) classical theory for sieved M-estimators, and (iii) recent results on approximation rates and metric entropies of neural network classes. The results also provide theoretical insight on how the choice of velocity field class, and the dependence of this choice on sample size $n$ (e.g., the scaling of width, depth, and sparsity of neural network classes), impacts statistical performance.

Using diffusion models to solve inverse problems is a growing field of research. Current methods assume the degradation to be known and provide impressive results in terms of restoration quality and diversity. In this work, we leverage the efficiency of those models to jointly estimate the restored image and unknown parameters of the degradation model. In particular, we designed an algorithm based on the well-known Expectation-Minimization (EM) estimation method and diffusion models. Our method alternates between approximating the expected log-likelihood of the inverse problem using samples drawn from a diffusion model and a maximization step to estimate unknown model parameters. For the maximization step, we also introduce a novel blur kernel regularization based on a Plug \& Play denoiser. Diffusion models are long to run, thus we provide a fast version of our algorithm. Extensive experiments on blind image deblurring demonstrate the effectiveness of our method when compared to other state-of-the-art approaches.

Hawkes processes are often applied to model dependence and interaction phenomena in multivariate event data sets, such as neuronal spike trains, social interactions, and financial transactions. In the nonparametric setting, learning the temporal dependence structure of Hawkes processes is generally a computationally expensive task, all the more with Bayesian estimation methods. In particular, for generalised nonlinear Hawkes processes, Monte-Carlo Markov Chain methods applied to compute the doubly intractable posterior distribution are not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting a mean-field variational approximation of the posterior distribution have been proposed. In this work, we first unify existing variational Bayes approaches under a general nonparametric inference framework, and analyse the asymptotic properties of these methods under easily verifiable conditions on the prior, the variational class, and the nonlinear model. Secondly, we propose a novel sparsity-inducing procedure, and derive an adaptive mean-field variational algorithm for the popular sigmoid Hawkes processes. Our algorithm is parallelisable and therefore computationally efficient in high-dimensional setting. Through an extensive set of numerical simulations, we also demonstrate that our procedure is able to adapt to the dimensionality of the parameter of the Hawkes process, and is partially robust to some type of model mis-specification.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司