亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In computational social science (CSS), researchers analyze documents to explain social and political phenomena. In most scenarios, CSS researchers first obtain labels for documents and then explain labels using interpretable regression analyses in the second step. One increasingly common way to annotate documents cheaply at scale is through large language models (LLMs). However, like other scalable ways of producing annotations, such surrogate labels are often imperfect and biased. We present a new algorithm for using imperfect annotation surrogates for downstream statistical analyses while guaranteeing statistical properties -- like asymptotic unbiasedness and proper uncertainty quantification -- which are fundamental to CSS research. We show that direct use of surrogate labels in downstream statistical analyses leads to substantial bias and invalid confidence intervals, even with high surrogate accuracy of 80--90\%. To address this, we build on debiased machine learning to propose the design-based supervised learning (DSL) estimator. DSL employs a doubly-robust procedure to combine surrogate labels with a smaller number of high-quality, gold-standard labels. Our approach guarantees valid inference for downstream statistical analyses, even when surrogates are arbitrarily biased and without requiring stringent assumptions, by controlling the probability of sampling documents for gold-standard labeling. Both our theoretical analysis and experimental results show that DSL provides valid statistical inference while achieving root mean squared errors comparable to existing alternatives that focus only on prediction without inferential guarantees.

相關內容

Knowledge graphs (KGs) have become valuable knowledge resources in various applications, and knowledge graph embedding (KGE) methods have garnered increasing attention in recent years. However, conventional KGE methods still face challenges when it comes to handling unseen entities or relations during model testing. To address this issue, much effort has been devoted to various fields of KGs. In this paper, we use a set of general terminologies to unify these methods and refer to them collectively as Knowledge Extrapolation. We comprehensively summarize these methods, classified by our proposed taxonomy, and describe their interrelationships. Additionally, we introduce benchmarks and provide comparisons of these methods based on aspects that are not captured by the taxonomy. Finally, we suggest potential directions for future research.

Using machine learning (ML) techniques to predict material properties is a crucial research topic. These properties depend on numerical data and semantic factors. Due to the limitations of small-sample datasets, existing methods typically adopt ML algorithms to regress numerical properties or transfer other pre-trained knowledge graphs (KGs) to the material. However, these methods cannot simultaneously handle semantic and numerical information. In this paper, we propose a numerical reasoning method for material KGs (NR-KG), which constructs a cross-modal KG using semantic nodes and numerical proxy nodes. It captures both types of information by projecting KG into a canonical KG and utilizes a graph neural network to predict material properties. In this process, a novel projection prediction loss is proposed to extract semantic features from numerical information. NR-KG facilitates end-to-end processing of cross-modal data, mining relationships and cross-modal information in small-sample datasets, and fully utilizes valuable experimental data to enhance material prediction. We further propose two new High-Entropy Alloys (HEA) property datasets with semantic descriptions. NR-KG outperforms state-of-the-art (SOTA) methods, achieving relative improvements of 25.9% and 16.1% on two material datasets. Besides, NR-KG surpasses SOTA methods on two public physical chemistry molecular datasets, showing improvements of 22.2% and 54.3%, highlighting its potential application and generalizability. We hope the proposed datasets, algorithms, and pre-trained models can facilitate the communities of KG and AI for materials.

Scientific research organizations that are developing and deploying Artificial Intelligence (AI) systems are at the intersection of technological progress and ethical considerations. The push for Responsible AI (RAI) in such institutions underscores the increasing emphasis on integrating ethical considerations within AI design and development, championing core values like fairness, accountability, and transparency. For scientific research organizations, prioritizing these practices is paramount not just for mitigating biases and ensuring inclusivity, but also for fostering trust in AI systems among both users and broader stakeholders. In this paper, we explore the practices at a research organization concerning RAI practices, aiming to assess the awareness and preparedness regarding the ethical risks inherent in AI design and development. We have adopted a mixed-method research approach, utilising a comprehensive survey combined with follow-up in-depth interviews with selected participants from AI-related projects. Our results have revealed certain knowledge gaps concerning ethical, responsible, and inclusive AI, with limitations in awareness of the available AI ethics frameworks. This revealed an overarching underestimation of the ethical risks that AI technologies can present, especially when implemented without proper guidelines and governance. Our findings reveal the need for a holistic and multi-tiered strategy to uplift capabilities and better support science research teams for responsible, ethical, and inclusive AI development and deployment.

Federated learning (FL) is a privacy-preserving collaboratively machine learning paradigm. Traditional FL requires all data owners (a.k.a. FL clients) to train the same local model. This design is not well-suited for scenarios involving data and/or system heterogeneity. Model-Heterogeneous Personalized FL (MHPFL) has emerged to address this challenge. Existing MHPFL approaches often rely on having a public dataset with the same nature of the learning task, or incur high computation and communication costs. To address these limitations, we propose the Federated Semantic Similarity Aggregation (FedSSA) approach, which splits each client's model into a heterogeneous (structure-different) feature extractor and a homogeneous (structure-same) classification header. It performs local-to-global knowledge transfer via semantic similarity-based header parameter aggregation. In addition, global-to-local knowledge transfer is achieved via an adaptive parameter stabilization strategy which fuses the seen-class parameters of historical local headers with that of the latest global header for each client. In this way, FedSSA does not rely on public datasets, while only requiring partial header parameter transmission (thereby saving costs). Theoretical analysis proves the convergence of FedSSA. Extensive experiments demonstrate that FedSSA achieves up to $3.62 \times\%$ higher accuracy, $15.54$ times higher communication efficiency, and $15.52 \times$ higher computational efficiency compared to 7 state-of-the-art MHPFL baselines.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).

北京阿比特科技有限公司