Diffusion models and large language models have emerged as leading-edge generative models, revolutionizing various aspects of human life. However, the practical implementations of these models have also exposed inherent risks, bringing to the forefront their evil sides and sparking concerns regarding their trustworthiness. Despite the wealth of literature on this subject, a comprehensive survey specifically delving into the intersection of large-scale generative models and their trustworthiness remains largely absent. To bridge this gap, this paper investigates both the long-standing and emerging threats associated with these models across four fundamental dimensions: 1) privacy, 2) security, 3) fairness, and 4) responsibility. Based on the investigation results, we develop an extensive map outlining the trustworthiness of large generative models. After that, we provide practical recommendations and potential research directions for future secure applications equipped with large generative models, ultimately promoting the trustworthiness of the models and benefiting the society as a whole.
Recently, ChatGPT, a representative large language model (LLM), has gained considerable attention due to its powerful emergent abilities. Some researchers suggest that LLMs could potentially replace structured knowledge bases like knowledge graphs (KGs) and function as parameterized knowledge bases. However, while LLMs are proficient at learning probabilistic language patterns based on large corpus and engaging in conversations with humans, they, like previous smaller pre-trained language models (PLMs), still have difficulty in recalling facts while generating knowledge-grounded contents. To overcome these limitations, researchers have proposed enhancing data-driven PLMs with knowledge-based KGs to incorporate explicit factual knowledge into PLMs, thus improving their performance to generate texts requiring factual knowledge and providing more informed responses to user queries. This paper reviews the studies on enhancing PLMs with KGs, detailing existing knowledge graph enhanced pre-trained language models (KGPLMs) as well as their applications. Inspired by existing studies on KGPLM, this paper proposes to enhance LLMs with KGs by developing knowledge graph-enhanced large language models (KGLLMs). KGLLM provides a solution to enhance LLMs' factual reasoning ability, opening up new avenues for LLM research.
While "instruction-tuned" generative large language models (LLMs) have demonstrated an impressive ability to generalize to new tasks, the training phases heavily rely on large amounts of diverse and high-quality instruction data (such as ChatGPT and GPT-4). Unfortunately, acquiring high-quality data, especially when it comes to human-written data, can pose significant challenges both in terms of cost and accessibility. Moreover, concerns related to privacy can further limit access to such data, making the process of obtaining it a complex and nuanced undertaking. Consequently, this hinders the generality of the tuned models and may restrict their effectiveness in certain contexts. To tackle this issue, our study introduces a new approach called Federated Instruction Tuning (FedIT), which leverages federated learning (FL) as the learning framework for the instruction tuning of LLMs. This marks the first exploration of FL-based instruction tuning for LLMs. This is especially important since text data is predominantly generated by end users. Therefore, it is imperative to design and adapt FL approaches to effectively leverage these users' diverse instructions stored on local devices, while preserving privacy and ensuring data security. In the current paper, by conducting widely used GPT-4 auto-evaluation, we demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with the proposed framework FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions. Further, in this paper, we developed a Github repository named Shepherd. This repository offers a foundational framework for exploring federated fine-tuning of LLMs using heterogeneous instructions across diverse categories.
In the realm of deep learning, understanding the latent space of language models (LMs) like transformers is crucial for refining their performance and interpretability. However, existing analyses often fall short in providing absolute and model-centric insights into LM semantics, and neglect essential aspects of LM adaption. In response, we introduce a pioneering method called vocabulary-defined semantics, which establishes a fixed reference frame within the LM latent space, ensuring absolute semantic analysis grounded in LM vocabulary. Our approach transcends prior relative analyses, leveraging LM vocabulary for model-centric insights. Furthermore, we propose a novel technique to compute logits, emphasizing differentiability and local isotropy, and introduce a neural clustering module for semantically calibrating data representations during LM adaptation. Through extensive experiments across diverse text understanding datasets, our approach surpasses state-of-the-art methods of retrieval-augmented generation and parameters-efficient finetuning, showcasing its efficacy and broad applicability. Our findings not only shed light on LM mechanics but also offer practical solutions for enhancing LM performance and interpretability.
Existing vision-language models exhibit strong generalization on a variety of visual domains and tasks. However, such models mainly perform zero-shot recognition in a closed-set manner, and thus struggle to handle open-domain visual concepts by design. There are recent finetuning methods, such as prompt learning, that not only study the discrimination between in-distribution (ID) and out-of-distribution (OOD) samples, but also show some improvements in both ID and OOD accuracies. In this paper, we first demonstrate that vision-language models, after long enough finetuning but without proper regularization, tend to overfit the known classes in the given dataset, with degraded performance on unknown classes. Then we propose a novel approach OGEN to address this pitfall, with the main focus on improving the OOD GENeralization of finetuned models. Specifically, a class-conditional feature generator is introduced to synthesize OOD features using just the class name of any unknown class. Such synthesized features will provide useful knowledge about unknowns and help regularize the decision boundary between ID and OOD data when optimized jointly. Equally important is our adaptive self-distillation mechanism to regularize our feature generation model during joint optimization, i.e., adaptively transferring knowledge between model states to further prevent overfitting. Experiments validate that our method yields convincing gains in OOD generalization performance in different settings.
There exist both scalable tasks, like reading comprehension and fact-checking, where model performance improves with model size, and unscalable tasks, like arithmetic reasoning and symbolic reasoning, where model performance does not necessarily improve with model size. Large language models (LLMs) equipped with Chain-of-Thought (CoT) prompting are able to make accurate incremental predictions even on unscalable tasks. Unfortunately, despite their exceptional reasoning abilities, LLMs tend to internalize and reproduce discriminatory societal biases. Whether CoT can provide discriminatory or egalitarian rationalizations for the implicit information in unscalable tasks remains an open question. In this study, we examine the impact of LLMs' step-by-step predictions on gender bias in unscalable tasks. For this purpose, we construct a benchmark for an unscalable task where the LLM is given a list of words comprising feminine, masculine, and gendered occupational words, and is required to count the number of feminine and masculine words. In our CoT prompts, we require the LLM to explicitly indicate whether each word in the word list is a feminine or masculine before making the final predictions. With counting and handling the meaning of words, this benchmark has characteristics of both arithmetic reasoning and symbolic reasoning. Experimental results in English show that without step-by-step prediction, most LLMs make socially biased predictions, despite the task being as simple as counting words. Interestingly, CoT prompting reduces this unconscious social bias in LLMs and encourages fair predictions.
Recently, the large language models (LLMs) have shown extraordinary ability in understanding natural language and generating programming code. It has been a common practice of software engineers to consult LLMs when encountering coding questions. Although efforts have been made to avoid syntax errors and align the code with the intended semantics, the reliability and robustness of the code generationfrom LLMs have not yet been thoroughly studied. The executable code is not equivalent to the reliable and robust code, especially in the context of real-world software development. The misuse of APIs in the generated code could lead to severe problem, such as resource leaks, program crashes. To make things worse, the users of LLM code generation services are actually the developers that are most vulnerable to these code that seems right -- They are always novice developers that are not familiar with the APIs that LLMs generate code for them. Therefore, they could hardly tell the misuse in the code generated by LLMs, which further facilitates the incorrect code applied in real-world software. Existing code evaluation benchmark and datasets focus on crafting small tasks such as programming questions in coding interviews, which however deviates from the problem that developers would ask LLM for real-world coding help. To fill the missing piece, in this work, we propose a dataset RobustAPI for evaluating the reliability and robustness of code generated by LLMs. We collect 1208 coding questions from StackOverflow on 24 representative Java APIs. We summarize thecommon misuse patterns of these APIs and evaluate them oncurrent popular LLMs. The evaluation results show that evenfor GPT-4, 62% of the generated code contains API misuses,which would cause unexpected consequences if the code isintroduced into real-world software.
Multi-modal large language models(MLLMs) have achieved remarkable progress and demonstrated powerful knowledge comprehension and reasoning abilities. However, the mastery of domain-specific knowledge, which is essential for evaluating the intelligence of MLLMs, continues to be a challenge. Current multi-modal benchmarks for domain-specific knowledge concentrate on multiple-choice questions and are predominantly available in English, which imposes limitations on the comprehensiveness of the evaluation. To this end, we introduce CMMU, a novel benchmark for multi-modal and multi-type question understanding and reasoning in Chinese. CMMU consists of 3,603 questions in 7 subjects, covering knowledge from primary to high school. The questions can be categorized into 3 types: multiple-choice, multiple-response, and fill-in-the-blank, bringing greater challenges to MLLMs. In addition, we propose a rigorous evaluation strategy called ShiftCheck for assessing multiple-choice questions. The strategy aims to reduce position bias, minimize the influence of randomness on correctness, and perform a quantitative analysis of position bias. We evaluate seven open-source MLLMs along with GPT4-V, Gemini-Pro, and Qwen-VL-Plus. The results demonstrate that CMMU poses a significant challenge to the recent MLLMs.
This work delves into the expanding role of large language models (LLMs) in generating artificial data. LLMs are increasingly employed to create a variety of outputs, including annotations, preferences, instruction prompts, simulated dialogues, and free text. As these forms of LLM-generated data often intersect in their application, they exert mutual influence on each other and raise significant concerns about the quality and diversity of the artificial data incorporated into training cycles, leading to an artificial data ecosystem. To the best of our knowledge, this is the first study to aggregate various types of LLM-generated text data, from more tightly constrained data like "task labels" to more lightly constrained "free-form text". We then stress test the quality and implications of LLM-generated artificial data, comparing it with human data across various existing benchmarks. Despite artificial data's capability to match human performance, this paper reveals significant hidden disparities, especially in complex tasks where LLMs often miss the nuanced understanding of intrinsic human-generated content. This study critically examines diverse LLM-generated data and emphasizes the need for ethical practices in data creation and when using LLMs. It highlights the LLMs' shortcomings in replicating human traits and behaviors, underscoring the importance of addressing biases and artifacts produced in LLM-generated content for future research and development. All data and code are available on our project page.
Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.
Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.