2D-to-3D human pose lifting is fundamental for 3D human pose estimation (HPE). Graph Convolutional Network (GCN) has been proven inherently suitable to model the human skeletal topology. However, current GCN-based 3D HPE methods update the node features by aggregating their neighbors' information without considering the interaction of joints in different motion patterns. Although some studies import limb information to learn the movement patterns, the latent synergies among joints, such as maintaining balance in the motion are seldom investigated. We propose a hop-wise GraphFormer with intragroup joint refinement (HopFIR) to tackle the 3D HPE problem. The HopFIR mainly consists of a novel Hop-wise GraphFormer(HGF) module and an Intragroup Joint Refinement(IJR) module which leverages the prior limb information for peripheral joints refinement. The HGF module groups the joints by $k$-hop neighbors and utilizes a hop-wise transformer-like attention mechanism among these groups to discover latent joint synergy. Extensive experimental results show that HopFIR outperforms the SOTA methods with a large margin (on the Human3.6M dataset, the mean per joint position error (MPJPE) is 32.67mm). Furthermore, it is also demonstrated that previous SOTA GCN-based methods can benefit from the proposed hop-wise attention mechanism efficiently with significant performance promotion, such as SemGCN and MGCN are improved by 8.9% and 4.5%, respectively.
Large Language Models (LLMs) have made progress in various real-world tasks, which stimulates requirements for the evaluation of LLMs. Existing LLM evaluation methods are mainly supervised signal-based which depends on static datasets and cannot evaluate the ability of LLMs in dynamic real-world scenarios where deep interaction widely exists. Other LLM evaluation methods are human-based which are costly and time-consuming and are incapable of large-scale evaluation of LLMs. To address the issues above, we propose a novel Deep Interaction-based LLM-evaluation framework. In our proposed framework, LLMs' performances in real-world domains can be evaluated from their deep interaction with other LLMs in elaborately designed evaluation tasks. Furthermore, our proposed framework is a general evaluation method that can be applied to a host of real-world tasks such as machine translation and code generation. We demonstrate the effectiveness of our proposed method through extensive experiments on four elaborately designed evaluation tasks.
Compressed Sparse Column (CSC) and Coordinate (COO) are popular compression formats for sparse matrices. However, both CSC and COO are general purpose and cannot take advantage of any of the properties of the data other than sparsity, such as data redundancy. Highly redundant sparse data is common in many machine learning applications, such as genomics, and is often too large for in-core computation using conventional sparse storage formats. In this paper, we present two extensions to CSC: (1) Value-Compressed Sparse Column (VCSC) and (2) Index- and Value-Compressed Sparse Column (IVCSC). VCSC takes advantage of high redundancy within a column to further compress data up to 3-fold over COO and 2.25-fold over CSC, without significant negative impact to performance characteristics. IVCSC extends VCSC by compressing index arrays through delta encoding and byte-packing, achieving a 10-fold decrease in memory usage over COO and 7.5-fold decrease over CSC. Our benchmarks on simulated and real data show that VCSC and IVCSC can be read in compressed form with little added computational cost. These two novel compression formats offer a broadly useful solution to encoding and reading redundant sparse data.
Face Anti-Spoofing (FAS) aims to detect malicious attempts to invade a face recognition system by presenting spoofed faces. State-of-the-art FAS techniques predominantly rely on deep learning models but their cross-domain generalization capabilities are often hindered by the domain shift problem, which arises due to different distributions between training and testing data. In this study, we develop a generalized FAS method under the Efficient Parameter Transfer Learning (EPTL) paradigm, where we adapt the pre-trained Vision Transformer models for the FAS task. During training, the adapter modules are inserted into the pre-trained ViT model, and the adapters are updated while other pre-trained parameters remain fixed. We find the limitations of previous vanilla adapters in that they are based on linear layers, which lack a spoofing-aware inductive bias and thus restrict the cross-domain generalization. To address this limitation and achieve cross-domain generalized FAS, we propose a novel Statistical Adapter (S-Adapter) that gathers local discriminative and statistical information from localized token histograms. To further improve the generalization of the statistical tokens, we propose a novel Token Style Regularization (TSR), which aims to reduce domain style variance by regularizing Gram matrices extracted from tokens across different domains. Our experimental results demonstrate that our proposed S-Adapter and TSR provide significant benefits in both zero-shot and few-shot cross-domain testing, outperforming state-of-the-art methods on several benchmark tests. We will release the source code upon acceptance.
Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP). Although convenient for research and practical applications, open-source LLMs with fewer parameters often suffer from severe hallucinations compared to their larger counterparts. This paper focuses on measuring and reducing hallucinations in BLOOM 7B, a representative of such weaker open-source LLMs that are publicly available for research and commercial applications. We introduce HaloCheck, a lightweight BlackBox knowledge-free framework designed to quantify the severity of hallucinations in LLMs. Additionally, we explore techniques like knowledge injection and teacher-student approaches to alleviate hallucinations in low-parameter LLMs. Our experiments effectively demonstrate the reduction of hallucinations in challenging domains for these LLMs.
Mobile Internet has profoundly reshaped modern lifestyles in various aspects. Encrypted Traffic Classification (ETC) naturally plays a crucial role in managing mobile Internet, especially with the explosive growth of mobile apps using encrypted communication. Despite some existing learning-based ETC methods showing promising results, three-fold limitations still remain in real-world network environments, 1) label bias caused by traffic class imbalance, 2) traffic homogeneity caused by component sharing, and 3) training with reliance on sufficient labeled traffic. None of the existing ETC methods can address all these limitations. In this paper, we propose a novel Pre-trAining Semi-Supervised ETC framework, dubbed PASS. Our key insight is to resample the original train dataset and perform contrastive pre-training without using individual app labels directly to avoid label bias issues caused by class imbalance, while obtaining a robust feature representation to differentiate overlapping homogeneous traffic by pulling positive traffic pairs closer and pushing negative pairs away. Meanwhile, PASS designs a semi-supervised optimization strategy based on pseudo-label iteration and dynamic loss weighting algorithms in order to effectively utilize massive unlabeled traffic data and alleviate manual train dataset annotation workload. PASS outperforms state-of-the-art ETC methods and generic sampling approaches on four public datasets with significant class imbalance and traffic homogeneity, remarkably pushing the F1 of Cross-Platform215 with 1.31%, ISCX-17 with 9.12%. Furthermore, we validate the generality of the contrastive pre-training and pseudo-label iteration components of PASS, which can adaptively benefit ETC methods with diverse feature extractors.
Obstructive sleep apnea (OSA) is a prevalent sleep disorder affecting approximately one billion people world-wide. The current gold standard for diagnosing OSA, Polysomnography (PSG), involves an overnight hospital stay with multiple attached sensors, leading to potential inaccuracies due to the first-night effect. To address this, we present SlAction, a non-intrusive OSA detection system for daily sleep environments using infrared videos. Recognizing that sleep videos exhibit minimal motion, this work investigates the fundamental question: "Are respiratory events adequately reflected in human motions during sleep?" Analyzing the largest sleep video dataset of 5,098 hours, we establish correlations between OSA events and human motions during sleep. Our approach uses a low frame rate (2.5 FPS), a large size (60 seconds) and step (30 seconds) for sliding window analysis to capture slow and long-term motions related to OSA. Furthermore, we utilize a lightweight deep neural network for resource-constrained devices, ensuring all video streams are processed locally without compromising privacy. Evaluations show that SlAction achieves an average F1 score of 87.6% in detecting OSA across various environments. Implementing SlAction on NVIDIA Jetson Nano enables real-time inference (~3 seconds for a 60-second video clip), highlighting its potential for early detection and personalized treatment of OSA.
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.