We prove lower bounds for the randomized approximation of the embedding $\ell_1^m \rightarrow \ell_\infty^m$ based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix $N \in \mathbb{R}^{n \times m}$. These lower bounds reflect the increasing difficulty of the problem for $m \to \infty$, namely, a term $\sqrt{\log m}$ in the complexity $n$. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity $n$ only exhibits a $(\log\log m)$-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order $n^{1/2} ( \log n)^{-1/2}$.
We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unified framework. We build on the Bayesian approximation error (BAE) approach, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximum a posteriori probability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages.
We prove that the Weihrauch degree of the problem of finding a bad sequence in a non-well quasi order ($\mathsf{BS}$) is strictly above that of finding a descending sequence in an ill-founded linear order ($\mathsf{DS}$). This corrects our mistaken claim in arXiv:2010.03840, which stated that they are Weihrauch equivalent. We prove that K\"onig's lemma $\mathsf{KL}$ and the problem $\mathsf{wList}_{2^{\mathbb{N}},\leq\omega}$ of enumerating a given non-empty countable closed subset of $2^\mathbb{N}$ are not Weihrauch reducible to $\mathsf{DS}$ either, resolving two main open questions raised in arXiv:2010.03840.
Bent functions are maximally nonlinear Boolean functions with an even number of variables, which include a subclass of functions, the so-called hyper-bent functions whose properties are stronger than bent functions and a complete classification of hyper-bent functions is elusive and inavailable.~In this paper,~we solve an open problem of Mesnager that describes hyper-bentness of hyper-bent functions with multiple trace terms via Dillon-like exponents with coefficients in the extension field~$\mathbb{F}_{2^{2m}}$~of this field~$\mathbb{F}_{2^{m}}$. By applying M\"{o}bius transformation and the theorems of hyperelliptic curves, hyper-bentness of these functions are successfully characterized in this field~$\mathbb{F}_{2^{2m}}$ with~$m$~odd integer.
In practical massive multiple-input multiple-output (MIMO) systems, the precoding matrix is often obtained from the eigenvectors of channel matrices and is challenging to update in time due to finite computation resources at the base station, especially in mobile scenarios. In order to reduce the precoding complexity while enhancing the spectral efficiency (SE), a novel precoding matrix prediction method based on the eigenvector prediction (EGVP) is proposed. The basic idea is to decompose the periodic uplink channel eigenvector samples into a linear combination of the channel state information (CSI) and channel weights. We further prove that the channel weights can be interpolated by an exponential model corresponding to the Doppler characteristics of the CSI. A fast matrix pencil prediction (FMPP) method is also devised to predict the CSI. We also prove that our scheme achieves asymptotically error-free precoder prediction with a distinct complexity advantage. Simulation results show that under the perfect non-delayed CSI, the proposed EGVP method reduces floating point operations by 80\% without losing SE performance compared to the traditional full-time precoding scheme. In more realistic cases with CSI delays, the proposed EGVP-FMPP scheme has clear SE performance gains compared to the precoding scheme widely used in current communication systems.
We introduce a new Langevin dynamics based algorithm, called e-TH$\varepsilon$O POULA, to solve optimization problems with discontinuous stochastic gradients which naturally appear in real-world applications such as quantile estimation, vector quantization, CVaR minimization, and regularized optimization problems involving ReLU neural networks. We demonstrate both theoretically and numerically the applicability of the e-TH$\varepsilon$O POULA algorithm. More precisely, under the conditions that the stochastic gradient is locally Lipschitz in average and satisfies a certain convexity at infinity condition, we establish non-asymptotic error bounds for e-TH$\varepsilon$O POULA in Wasserstein distances and provide a non-asymptotic estimate for the expected excess risk, which can be controlled to be arbitrarily small. Three key applications in finance and insurance are provided, namely, multi-period portfolio optimization, transfer learning in multi-period portfolio optimization, and insurance claim prediction, which involve neural networks with (Leaky)-ReLU activation functions. Numerical experiments conducted using real-world datasets illustrate the superior empirical performance of e-TH$\varepsilon$O POULA compared to SGLD, TUSLA, ADAM, and AMSGrad in terms of model accuracy.
We consider the problem of enumerating all minimal transversals (also called minimal hitting sets) of a hypergraph $\mathcal{H}$. An equivalent formulation of this problem known as the \emph{transversal hypergraph} problem (or \emph{hypergraph dualization} problem) is to decide, given two hypergraphs, whether one corresponds to the set of minimal transversals of the other. The existence of a polynomial time algorithm to solve this problem is a long standing open question. In \cite{fredman_complexity_1996}, the authors present the first sub-exponential algorithm to solve the transversal hypergraph problem which runs in quasi-polynomial time, making it unlikely that the problem is (co)NP-complete. In this paper, we show that when one of the two hypergraphs is of bounded VC-dimension, the transversal hypergraph problem can be solved in polynomial time, or equivalently that if $\mathcal{H}$ is a hypergraph of bounded VC-dimension, then there exists an incremental polynomial time algorithm to enumerate its minimal transversals. This result generalizes most of the previously known polynomial cases in the literature since they almost all consider classes of hypergraphs of bouded VC-dimension. As a consequence, the hypergraph transversal problem is solvable in polynomial time for any class of hypergraphs closed under partial subhypergraphs. We also show that the proposed algorithm runs in quasi-polynomial time in general hypergraphs and runs in polynomial time if the conformality of the hypergraph is bounded, which is one of the few known polynomial cases where the VC-dimension is unbounded.
Structure-preserving particle methods have recently been proposed for a class of nonlinear continuity equations, including aggregation-diffusion equation in [J. Carrillo, K. Craig, F. Patacchini, Calc. Var., 58 (2019), pp. 53] and the Landau equation in [J. Carrillo, J. Hu., L. Wang, J. Wu, J. Comput. Phys. X, 7 (2020), pp. 100066]. One common feature to these equations is that they both admit some variational formulation, which upon proper regularization, leads to particle approximations dissipating the energy and conserving some quantities simultaneously at the semi-discrete level. In this paper, we formulate continuity equations with a density dependent bilinear form associated with the variational derivative of the energy functional and prove that appropriate particle methods satisfy a compatibility condition with its regularized energy. This enables us to utilize discrete gradient time integrators and show that the energy can be dissipated and the mass conserved simultaneously at the fully discrete level. In the case of the Landau equation, we prove that our approach also conserves the momentum and kinetic energy at the fully discrete level. Several numerical examples are presented to demonstrate the dissipative and conservative properties of our proposed method.
Mean value coordinates can be used to map one polygon into another, with application to computer graphics and curve and surface modelling. In this paper we show that if the polygons are quadrilaterals, and if the target quadrilateral is convex, then the mapping is injective.
We propose a non-commutative algorithm for multiplying 2x2 matrices using 7 coefficient products. This algorithm reaches simultaneously a better accuracy in practice compared to previously known such fast algorithms, and a time complexity bound with the best currently known leading term (obtained via alternate basis sparsification). To build this algorithm, we consider matrix and tensor norms bounds governing the stability and accuracy of numerical matrix multiplication. First, we reduce those bounds by minimizing a growth factor along the unique orbit of Strassen's 2x2-matrix multiplication tensor decomposition. Second, we develop heuristics for minimizing the number of operations required to realize a given bilinear formula, while further improving its accuracy. Third, we perform an alternate basis sparsification that improves on the time complexity constant and mostly preserves the overall accuracy.
Time-fractional parabolic equations with a Caputo time derivative of order $\alpha\in(0,1)$ are discretized in time using continuous collocation methods. For such discretizations, we give sufficient conditions for existence and uniqueness of their solutions. Two approaches are explored: the Lax-Milgram Theorem and the eigenfunction expansion. The resulting sufficient conditions, which involve certain $m\times m$ matrices (where $m$ is the order of the collocation scheme), are verified both analytically, for all $m\ge 1$ and all sets of collocation points, and computationally, for all $ m\le 20$. The semilinear case is also addressed.