亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study local canonical labeling algorithms on an Erd\H{o}s--R\'enyi random graph $G(n,p_n)$. A canonical labeling algorithm assigns a unique label to each vertex of an unlabeled graph such that the labels are invariant under isomorphism. Here we focus on local algorithms, where the label of each vertex depends only on its low-depth neighborhood. Czajka and Pandurangan showed that the degree profile of a vertex (i.e., the sorted list of the degrees of its neighbors) gives a canonical labeling with high probability when $n p_n = \omega( \log^{4}(n) / \log \log n )$ (and $p_{n} \leq 1/2$); subsequently, Mossel and Ross showed that the same holds when $n p_n = \omega( \log^{2}(n) )$. Our first result shows that their analysis essentially cannot be improved: we prove that when $n p_n = o( \log^{2}(n) / (\log \log n)^{3} )$, with high probability there exist distinct vertices with isomorphic $2$-neighborhoods. Our main result is a positive counterpart to this, showing that $3$-neighborhoods give a canonical labeling when $n p_n \geq (1+\delta) \log n$ (and $p_n \leq 1/2$); this improves a recent result of Ding, Ma, Wu, and Xu, completing the picture above the connectivity threshold. We also discuss implications for random graph isomorphism and shotgun assembly of random graphs.

相關內容

We study a very restrictive graph exploration problem. In our model, an agent without persistent memory is placed on a vertex of a graph and only sees the adjacent vertices. The goal is to visit every vertex of the graph, return to the start vertex, and terminate. The agent does not know through which edge it entered a vertex. The agent may color the current vertex and can see the colors of the neighboring vertices in an arbitrary order. The agent may not recolor a vertex. We investigate the number of colors necessary and sufficient to explore all graphs. We prove that n-1 colors are necessary and sufficient for exploration in general, 3 colors are necessary and sufficient if only trees are to be explored, and min(2k-3,n-1) colors are necessary and min(2k-1,n-1) colors are sufficient on graphs of size n and circumference $k$, where the circumference is the length of a longest cycle. This only holds if an algorithm has to explore all graphs and not merely certain graph classes. We give an example for a graph class where each graph can be explored with 4 colors, although the graphs have maximal circumference. Moreover, we prove that recoloring vertices is very powerful by designing an algorithm with recoloring that uses only 7 colors and explores all graphs.

In order to apply canonical labelling of graphs and isomorphism checking in interactive theorem provers, these checking algorithms must either be mechanically verified or their results must be verifiable by independent checkers. We analyze a state-of-the-art algorithm for canonical labelling of graphs (described by McKay and Piperno) and formulate it in terms of a formal proof system. We provide an implementation that can export a proof that the obtained graph is the canonical form of a given graph. Such proofs are then verified by our independent checker and can be used to confirm that two given graphs are not isomorphic.

Despite the recent success of machine learning algorithms, most models face drawbacks when considering more complex tasks requiring interaction between different sources, such as multimodal input data and logical time sequences. On the other hand, the biological brain is highly sharpened in this sense, empowered to automatically manage and integrate such streams of information. In this context, this work draws inspiration from recent discoveries in brain cortical circuits to propose a more biologically plausible self-supervised machine learning approach. This combines multimodal information using intra-layer modulations together with Canonical Correlation Analysis, and a memory mechanism to keep track of temporal data, the overall approach termed Canonical Cortical Graph Neural networks. This is shown to outperform recent state-of-the-art models in terms of clean audio reconstruction and energy efficiency for a benchmark audio-visual speech dataset. The enhanced performance is demonstrated through a reduced and smother neuron firing rate distribution. suggesting that the proposed model is amenable for speech enhancement in future audio-visual hearing aid devices.

The paper tackles the problem of clustering multiple networks, that do not share the same set of vertices, into groups of networks with similar topology. A statistical model-based approach based on a finite mixture of stochastic block models is proposed. A clustering is obtained by maximizing the integrated classification likelihood criterion. This is done by a hierarchical agglomerative algorithm, that starts from singleton clusters and successively merges clusters of networks. As such, a sequence of nested clusterings is computed that can be represented by a dendrogram providing valuable insights on the collection of networks. Using a Bayesian framework, model selection is performed in an automated way since the algorithm stops when the best number of clusters is attained. The algorithm is computationally efficient, when carefully implemented. The aggregation of groups of networks requires a means to overcome the label-switching problem of the stochastic block model and to match the block labels of the graphs. To address this problem, a new tool is proposed based on a comparison of the graphons of the associated stochastic block models. The clustering approach is assessed on synthetic data. An application to a collection of ecological networks illustrates the interpretability of the obtained results.

In this paper, we study the identifiability and the estimation of the parameters of a copula-based multivariate model when the margins are unknown and are arbitrary, meaning that they can be continuous, discrete, or mixtures of continuous and discrete. When at least one margin is not continuous, the range of values determining the copula is not the entire unit square and this situation could lead to identifiability issues that are discussed here. Next, we propose estimation methods when the margins are unknown and arbitrary, using pseudo log-likelihood adapted to the case of discontinuities. In view of applications to large data sets, we also propose a pairwise composite pseudo log-likelihood. These methodologies can also be easily modified to cover the case of parametric margins. One of the main theoretical result is an extension to arbitrary distributions of known convergence results of rank-based statistics when the margins are continuous. As a by-product, under smoothness assumptions, we obtain that the asymptotic distribution of the estimation errors of our estimators are Gaussian. Finally, numerical experiments are presented to assess the finite sample performance of the estimators, and the usefulness of the proposed methodologies is illustrated with a copula-based regression model for hydrological data.

Graph neural networks (GNNs) are de facto standard deep learning architectures for machine learning on graphs. This has led to a large body of work analyzing the capabilities and limitations of these models, particularly pertaining to their representation and extrapolation capacity. We offer a novel theoretical perspective on the representation and extrapolation capacity of GNNs, by answering the question: how do GNNs behave as the number of graph nodes become very large? Under mild assumptions, we show that when we draw graphs of increasing size from the Erd\H{o}s-R\'enyi model, the probability that such graphs are mapped to a particular output by a class of GNN classifiers tends to either zero or to one. This class includes the popular graph convolutional network architecture. The result establishes 'zero-one laws' for these GNNs, and analogously to other convergence laws, entails theoretical limitations on their capacity. We empirically verify our results, observing that the theoretical asymptotic limits are evident already on relatively small graphs.

Current multilingual semantic parsing (MSP) datasets are almost all collected by translating the utterances in the existing datasets from the resource-rich language to the target language. However, manual translation is costly. To reduce the translation effort, this paper proposes the first active learning procedure for MSP (AL-MSP). AL-MSP selects only a subset from the existing datasets to be translated. We also propose a novel selection method that prioritizes the examples diversifying the logical form structures with more lexical choices, and a novel hyperparameter tuning method that needs no extra annotation cost. Our experiments show that AL-MSP significantly reduces translation costs with ideal selection methods. Our selection method with proper hyperparameters yields better parsing performance than the other baselines on two multilingual datasets.

Bayesian model comparison (BMC) offers a principled approach for assessing the relative merits of competing computational models and propagating uncertainty into model selection decisions. However, BMC is often intractable for the popular class of hierarchical models due to their high-dimensional nested parameter structure. To address this intractability, we propose a deep learning method for performing BMC on any set of hierarchical models which can be instantiated as probabilistic programs. Since our method enables amortized inference, it allows efficient re-estimation of posterior model probabilities and fast performance validation prior to any real-data application. In a series of extensive validation studies, we benchmark the performance of our method against the state-of-the-art bridge sampling method and demonstrate excellent amortized inference across all BMC settings. We then use our method to compare four hierarchical evidence accumulation models that have previously been deemed intractable for BMC due to partly implicit likelihoods. In this application, we corroborate evidence for the recently proposed L\'evy flight model of decision-making and show how transfer learning can be leveraged to enhance training efficiency. Reproducible code for all analyses is provided.

We study the causal bandit problem when the causal graph is unknown and develop an efficient algorithm for finding the parent node of the reward node using atomic interventions. We derive the exact equation for the expected number of interventions performed by the algorithm and show that under certain graphical conditions it could perform either logarithmically fast or, under more general assumptions, slower but still sublinearly in the number of variables. We formally show that our algorithm is optimal as it meets the universal lower bound we establish for any algorithm that performs atomic interventions. Finally, we extend our algorithm to the case when the reward node has multiple parents. Using this algorithm together with a standard algorithm from bandit literature leads to improved regret bounds.

Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.

北京阿比特科技有限公司