亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a theoretical and algorithmic framework for structured prediction in the online learning setting. The problem of structured prediction, i.e. estimating function where the output space lacks a vectorial structure, is well studied in the literature of supervised statistical learning. We show that our algorithm is a generalisation of optimal algorithms from the supervised learning setting, and achieves the same excess risk upper bound also when data are not i.i.d. Moreover, we consider a second algorithm designed especially for non-stationary data distributions, including adversarial data. We bound its stochastic regret in function of the variation of the data distributions.

相關內容

This paper explores decentralized learning in a graph-based setting, where data is distributed across nodes. We investigate a decentralized SGD algorithm that utilizes a random walk to update a global model based on local data. Our focus is on designing the transition probability matrix to speed up convergence. While importance sampling can enhance centralized learning, its decentralized counterpart, using the Metropolis-Hastings (MH) algorithm, can lead to the entrapment problem, where the random walk becomes stuck at certain nodes, slowing convergence. To address this, we propose the Metropolis-Hastings with L\'evy Jumps (MHLJ) algorithm, which incorporates random perturbations (jumps) to overcome entrapment. We theoretically establish the convergence rate and error gap of MHLJ and validate our findings through numerical experiments.

This paper provides a mathematical framework for client-server communication that results in a modular and type-safe architecture. It is informed and motivated by the software engineering practice of developing server backends with a database layer and a frontend, all of which communicate with a notion of request/response. I make use of dependent types to ensure the request/response relation matches and show how this idea fits in the broader context of containers and their morphisms. Using the category of containers and their monoidal products, I define monads on containers that mimic their functional programming counterparts, and using the Kleene star, I describe stateful protocols in the same system.

Deep learning provides powerful methods to impute structured information from large-scale, unstructured text and image datasets. For example, economists might wish to detect the presence of economic activity in satellite images, or to measure the topics or entities mentioned in social media, the congressional record, or firm filings. This review introduces deep neural networks, covering methods such as classifiers, regression models, generative AI, and embedding models. Applications include classification, document digitization, record linkage, and methods for data exploration in massive scale text and image corpora. When suitable methods are used, deep learning models can be cheap to tune and can scale affordably to problems involving millions or billions of data points.. The review is accompanied by a companion website, EconDL, with user-friendly demo notebooks, software resources, and a knowledge base that provides technical details and additional applications.

In this study, two-dimensional finite element complexes with various levels of smoothness, including the de Rham complex, the curldiv complex, the elasticity complex, and the divdiv complex, are systematically constructed. Smooth scalar finite elements in two dimensions are developed based on a non-overlapping decomposition of the simplicial lattice and the Bernstein basis of the polynomial space, with the order of differentiability at vertices being greater than twice that at edges. Finite element de Rham complexes with different levels of smoothness are devised using smooth finite elements with smoothness parameters that satisfy certain relations. Finally, finite element elasticity complexes and finite element divdiv complexes are derived from finite element de Rham complexes by using the Bernstein-Gelfand-Gelfand (BGG) framework. This study is the first work to construct finite element complexes in a systematic way. Moreover, the novel tools developed in this work, such as the non-overlapping decomposition of the simplicial lattice and the discrete BGG construction, can be useful for further research in this field.

Collaborative learning offers a promising avenue for leveraging decentralized data. However, collaboration in groups of strategic learners is not a given. In this work, we consider strategic agents who wish to train a model together but have sampling distributions of different quality. The collaboration is organized by a benevolent aggregator who gathers samples so as to maximize total welfare, but is unaware of data quality. This setting allows us to shed light on the deleterious effect of adverse selection in collaborative learning. More precisely, we demonstrate that when data quality indices are private, the coalition may undergo a phenomenon known as unravelling, wherein it shrinks up to the point that it becomes empty or solely comprised of the worst agent. We show how this issue can be addressed without making use of external transfers, by proposing a novel method inspired by probabilistic verification. This approach makes the grand coalition a Nash equilibrium with high probability despite information asymmetry, thereby breaking unravelling.

We introduce a novel class of algorithms to efficiently approximate the unknown return distributions in policy evaluation problems from distributional reinforcement learning (DRL). The proposed distributional dynamic programming algorithms are suitable for underlying Markov decision processes (MDPs) having an arbitrary probabilistic reward mechanism, including continuous reward distributions with unbounded support being potentially heavy-tailed. For a plain instance of our proposed class of algorithms we prove error bounds, both within Wasserstein and Kolmogorov--Smirnov distances. Furthermore, for return distributions having probability density functions the algorithms yield approximations for these densities; error bounds are given within supremum norm. We introduce the concept of quantile-spline discretizations to come up with algorithms showing promising results in simulation experiments. While the performance of our algorithms can rigorously be analysed they can be seen as universal black box algorithms applicable to a large class of MDPs. We also derive new properties of probability metrics commonly used in DRL on which our quantitative analysis is based.

We introduce a novel concept termed "stochastic distance" for property testing. Diverging from the traditional definition of distance, where a distance $t$ implies that there exist $t$ edges that can be added to ensure a graph possesses a certain property (such as $k$-edge-connectivity), our new notion implies that there is a high probability that adding $t$ random edges will endow the graph with the desired property. While formulating testers based on this new distance proves challenging in a sequential environment, it is much easier in a distributed setting. Taking $k$-edge-connectivity as a case study, we design ultra-fast testing algorithms in the CONGEST model. Our introduction of stochastic distance offers a more natural fit for the distributed setting, providing a promising avenue for future research in emerging models of computation.

Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司