We contribute to the knowledge of linear codes from special polynomials and functions, which have been studied intensively in the past few years. Such codes have several applications in secret sharing, authentication codes, association schemes and strongly regular graphs. This is the first work in which we study the dual codes in the framework of the two generic constructions; in particular, we propose a Gram-Schmidt (complexity of $\mathcal{O}(n^3)$) process to compute them explicitly. The originality of this contribution is in the study of the existence or not of defining sets $D'$, which can be used as ingredients to construct the dual code $\mathcal{C}'$ for a given code $\mathcal{C}$ in the context of the second generic construction. We also determine a necessary condition expressed by employing the Walsh transform for a codeword of $\mathcal{C}$ to belong in the dual. This achievement was done in general and when the involved functions are weakly regularly bent. We shall give a novel description of the Hull code in the framework of the two generic constructions. Our primary interest is constructing linear codes of fixed Hull dimension and determining the (Hamming) weight of the codewords in their duals.
In PDE-constrained optimization, one aims to find design parameters that minimize some objective, subject to the satisfaction of a partial differential equation. A major challenges is computing gradients of the objective to the design parameters, as applying the chain rule requires computing the Jacobian of the design parameters to the PDE's state. The adjoint method avoids this Jacobian by computing partial derivatives of a Lagrangian. Evaluating these derivatives requires the solution of a second PDE with the adjoint differential operator to the constraint, resulting in a backwards-in-time simulation. Particle-based Monte Carlo solvers are often used to compute the solution to high-dimensional PDEs. However, such solvers have the drawback of introducing noise to the computed results, thus requiring stochastic optimization methods. To guarantee convergence in this setting, both the constraint and adjoint Monte Carlo simulations should simulate the same particle trajectories. For large simulations, storing full paths from the constraint equation for re-use in the adjoint equation becomes infeasible due to memory limitations. In this paper, we provide a reversible extension to the family of permuted congruential pseudorandom number generators (PCG). We then use such a generator to recompute these time-reversed paths for the heat equation, avoiding these memory issues.
The problem of optimal recovering high-order mixed derivatives of bivariate functions with finite smoothness is studied. On the basis of the truncation method, an algorithm for numerical differentiation is constructed, which is order-optimal both in the sense of accuracy and in terms of the amount of involved Galerkin information.
The proliferation of data generation has spurred advancements in functional data analysis. With the ability to analyze multiple variables simultaneously, the demand for working with multivariate functional data has increased. This study proposes a novel formulation of the epigraph and hypograph indexes, as well as their generalized expressions, specifically tailored for the multivariate functional context. These definitions take into account the interrelations between components. Furthermore, the proposed indexes are employed to cluster multivariate functional data. In the clustering process, the indexes are applied to both the data and their first and second derivatives. This generates a reduced-dimension dataset from the original multivariate functional data, enabling the application of well-established multivariate clustering techniques that have been extensively studied in the literature. This methodology has been tested through simulated and real datasets, performing comparative analyses against state-of-the-art to assess its performance.
Stochastic memoization is a higher-order construct of probabilistic programming languages that is key in Bayesian nonparametrics, a modular approach that allows us to extend models beyond their parametric limitations and compose them in an elegant and principled manner. Stochastic memoization is simple and useful in practice, but semantically elusive, particularly regarding dataflow transformations. As the naive implementation resorts to the state monad, which is not commutative, it is not clear if stochastic memoization preserves the dataflow property -- i.e., whether we can reorder the lines of a program without changing its semantics, provided the dataflow graph is preserved. In this paper, we give an operational and categorical semantics to stochastic memoization and name generation in the context of a minimal probabilistic programming language, for a restricted class of functions. Our contribution is a first model of stochastic memoization of constant Bernoulli functions with a non-enumerable type, which validates data flow transformations, bridging the gap between traditional probability theory and higher-order probability models. Our model uses a presheaf category and a novel probability monad on it.
We study an optimal control problem governed by elliptic PDEs with interface, which the control acts on the interface. Due to the jump of the coefficient across the interface and the control acting on the interface, the regularity of solution of the control problem is limited on the whole domain, but smoother on subdomains. The control function with pointwise inequality constraints is served as the flux jump condition which we called Neumann interface control. We use a simple uniform mesh that is independent of the interface. The standard linear finite element method can not achieve optimal convergence when the uniform mesh is used. Therefore the state and adjoint state equations are discretized by piecewise linear immersed finite element method (IFEM). While the accuracy of the piecewise constant approximation of the optimal control on the interface is improved by a postprocessing step which possesses superconvergence properties; as well as the variational discretization concept for the optimal control is used to improve the error estimates. Optimal error estimates for the control, suboptimal error estimates for state and adjoint state are derived. Numerical examples with and without constraints are provided to illustrate the effectiveness of the proposed scheme and correctness of the theoretical analysis.
We present a general theory to quantify the uncertainty from imposing structural assumptions on the second-order structure of nonstationary Hilbert space-valued processes, which can be measured via functionals of time-dependent spectral density operators. The second-order dynamics are well-known to be elements of the space of trace-class operators, the latter is a Banach space of type 1 and of cotype 2, which makes the development of statistical inference tools more challenging. A part of our contribution is to obtain a weak invariance principle as well as concentration inequalities for (functionals of) the sequential time-varying spectral density operator. In addition, we introduce deviation measures in the nonstationary context, and derive estimators that are asymptotically pivotal. We then apply this framework and propose statistical methodology to investigate the validity of structural assumptions for nonstationary response surface data, such as low-rank assumptions in the context of time-varying dynamic fPCA and principle separable component analysis, deviations from stationarity with respect to the square root distance, and deviations from zero functional canonical coherency.
In indoor scenes, reverberation is a crucial factor in degrading the perceived quality and intelligibility of speech. In this work, we propose a generative dereverberation method. Our approach is based on a probabilistic model utilizing a recurrent variational auto-encoder (RVAE) network and the convolutive transfer function (CTF) approximation. Different from most previous approaches, the output of our RVAE serves as the prior of the clean speech. And our target is the maximum a posteriori (MAP) estimation of clean speech, which is achieved iteratively through the expectation maximization (EM) algorithm. The proposed method integrates the capabilities of network-based speech prior modelling and CTF-based observation modelling. Experiments on single-channel speech dereverberation show that the proposed generative method noticeably outperforms the advanced discriminative networks.
The sequential composition of propositional logic programs has been recently introduced. This paper studies the sequential {\em decomposition} of programs by studying Green's relations $\mathcal{L,R,J}$ -- well-known in semigroup theory -- between programs. In a broader sense, this paper is a further step towards an algebraic theory of logic programming.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.