This paper presents a model-free reinforcement learning (RL) algorithm to synthesize a control policy that maximizes the satisfaction probability of linear temporal logic (LTL) specifications. Due to the consideration of environment and motion uncertainties, we model the robot motion as a probabilistic labeled Markov decision process with unknown transition probabilities and unknown probabilistic label functions. The LTL task specification is converted to a limit deterministic generalized B\"uchi automaton (LDGBA) with several accepting sets to maintain dense rewards during learning. The novelty of applying LDGBA is to construct an embedded LDGBA (E-LDGBA) by designing a synchronous tracking-frontier function, which enables the record of non-visited accepting sets without increasing dimensional and computational complexity. With appropriate dependent reward and discount functions, rigorous analysis shows that any method that optimizes the expected discount return of the RL-based approach is guaranteed to find the optimal policy that maximizes the satisfaction probability of the LTL specifications. A model-free RL-based motion planning strategy is developed to generate the optimal policy in this paper. The effectiveness of the RL-based control synthesis is demonstrated via simulation and experimental results.
Deep Reinforcement Learning (DRL) has demonstrated great potentials in solving sequential decision making problems in many applications. Despite its promising performance, practical gaps exist when deploying DRL in real-world scenarios. One main barrier is the over-fitting issue that leads to poor generalizability of the policy learned by DRL. In particular, for offline DRL with observational data, model selection is a challenging task as there is no ground truth available for performance demonstration, in contrast with the online setting with simulated environments. In this work, we propose a pessimistic model selection (PMS) approach for offline DRL with a theoretical guarantee, which features a provably effective framework for finding the best policy among a set of candidate models. Two refined approaches are also proposed to address the potential bias of DRL model in identifying the optimal policy. Numerical studies demonstrated the superior performance of our approach over existing methods.
Maximum Entropy Reinforcement Learning (MaxEnt RL) algorithms such as Soft Q-Learning (SQL) and Soft Actor-Critic trade off reward and policy entropy, which has the potential to improve training stability and robustness. Most MaxEnt RL methods, however, use a constant tradeoff coefficient (temperature), contrary to the intuition that the temperature should be high early in training to avoid overfitting to noisy value estimates and decrease later in training as we increasingly trust high value estimates to truly lead to good rewards. Moreover, our confidence in value estimates is state-dependent, increasing every time we use more evidence to update an estimate. In this paper, we present a simple state-based temperature scheduling approach, and instantiate it for SQL as Count-Based Soft Q-Learning (CBSQL). We evaluate our approach on a toy domain as well as in several Atari 2600 domains and show promising results.
Partial MaxSAT (PMS) and Weighted Partial MaxSAT (WPMS) are both practical generalizations to the typical combinatorial problem of MaxSAT. In this work, we propose an effective farsighted probabilistic sampling based local search algorithm called FPS for solving these two problems, denoted as (W)PMS. The FPS algorithm replaces the mechanism of flipping a single variable per iteration step, that is widely used in existing (W)PMS local search algorithms, with the proposed farsighted local search strategy, and provides higher-quality local optimal solutions. The farsighted strategy employs the probabilistic sampling technique that allows the algorithm to look-ahead widely and efficiently. In this way, FPS can provide more and better search directions and improve the performance without reducing the efficiency. Extensive experiments on all the benchmarks of (W)PMS problems from the incomplete track of recent four years of MaxSAT Evaluations demonstrate that our method significantly outperforms SATLike3.0, the state-of-the-art local search algorithm, for solving both the PMS and WPMS problems. We furthermore do comparison with the extended solver of SATLike, SATLike-c, which is the champion of three categories among the total four (PMS and WPMS categories, each associated with two time limits) of the incomplete track in the recent MaxSAT Evaluation (MSE2021). We replace the local search component in SATLike-c with the proposed farsighted sampling local search approach, and the resulting solver FPS-c also outperforms SATLike-c for solving both the PMS and WPMS problems.
Deep Learning has become overly complicated and has enjoyed stellar success in solving several classical problems like image classification, object detection, etc. Several methods for explaining these decisions have been proposed. Black-box methods to generate saliency maps are particularly interesting due to the fact that they do not utilize the internals of the model to explain the decision. Most black-box methods perturb the input and observe the changes in the output. We formulate saliency map generation as a sequential search problem and leverage upon Reinforcement Learning (RL) to accumulate evidence from input images that most strongly support decisions made by a classifier. Such a strategy encourages to search intelligently for the perturbations that will lead to high-quality explanations. While successful black box explanation approaches need to rely on heavy computations and suffer from small sample approximation, the deterministic policy learned by our method makes it a lot more efficient during the inference. Experiments on three benchmark datasets demonstrate the superiority of the proposed approach in inference time over state-of-the-arts without hurting the performance. Project Page: //cvir.github.io/projects/rexl.html
This paper studies optimal motion planning subject to motion and environment uncertainties. By modeling the system as a probabilistic labeled Markov decision process (PL-MDP), the control objective is to synthesize a finite-memory policy, under which the agent satisfies high-level complex tasks expressed as linear temporal logic (LTL) with desired satisfaction probability. In particular, the cost optimization of the trajectory that satisfies infinite-horizon tasks is considered, and the trade-off between reducing the expected mean cost and maximizing the probability of task satisfaction is analyzed. Instead of using traditional Rabin automata, the LTL formulas are converted to limit-deterministic B\"uchi automata (LDBA) with a more straightforward accepting condition and a more compact graph structure. The novelty of this work lies in the consideration of the cases that LTL specifications can be potentially infeasible and the development of a relaxed product MDP between PL-MDP and LDBA. The relaxed product MDP allows the agent to revise its motion plan whenever the task is not fully feasible and to quantify the violation measurement of the revised plan. A multi-objective optimization problem is then formulated to jointly consider the probability of the task satisfaction, the violation with respect to original task constraints, and the implementation cost of the policy execution, which is solved via coupled linear programs. To the best of our knowledge, it is the first work that bridges the gap between planning revision and optimal control synthesis of both plan prefix and plan suffix of the agent trajectory over the infinite horizon. Experimental results are provided to demonstrate the effectiveness of the proposed framework.
Meta-reinforcement learning (meta-RL) aims to learn from multiple training tasks the ability to adapt efficiently to unseen test tasks. Despite the success, existing meta-RL algorithms are known to be sensitive to the task distribution shift. When the test task distribution is different from the training task distribution, the performance may degrade significantly. To address this issue, this paper proposes Model-based Adversarial Meta-Reinforcement Learning (AdMRL), where we aim to minimize the worst-case sub-optimality gap -- the difference between the optimal return and the return that the algorithm achieves after adaptation -- across all tasks in a family of tasks, with a model-based approach. We propose a minimax objective and optimize it by alternating between learning the dynamics model on a fixed task and finding the adversarial task for the current model -- the task for which the policy induced by the model is maximally suboptimal. Assuming the family of tasks is parameterized, we derive a formula for the gradient of the suboptimality with respect to the task parameters via the implicit function theorem, and show how the gradient estimator can be efficiently implemented by the conjugate gradient method and a novel use of the REINFORCE estimator. We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks, the generalization power to out-of-distribution tasks, and in training and test time sample efficiency, over existing state-of-the-art meta-RL algorithms.
Applying image processing algorithms independently to each frame of a video often leads to undesired inconsistent results over time. Developing temporally consistent video-based extensions, however, requires domain knowledge for individual tasks and is unable to generalize to other applications. In this paper, we present an efficient end-to-end approach based on deep recurrent network for enforcing temporal consistency in a video. Our method takes the original unprocessed and per-frame processed videos as inputs to produce a temporally consistent video. Consequently, our approach is agnostic to specific image processing algorithms applied on the original video. We train the proposed network by minimizing both short-term and long-term temporal losses as well as the perceptual loss to strike a balance between temporal stability and perceptual similarity with the processed frames. At test time, our model does not require computing optical flow and thus achieves real-time speed even for high-resolution videos. We show that our single model can handle multiple and unseen tasks, including but not limited to artistic style transfer, enhancement, colorization, image-to-image translation and intrinsic image decomposition. Extensive objective evaluation and subject study demonstrate that the proposed approach performs favorably against the state-of-the-art methods on various types of videos.
We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.
This paper proposes a Reinforcement Learning (RL) algorithm to synthesize policies for a Markov Decision Process (MDP), such that a linear time property is satisfied. We convert the property into a Limit Deterministic Buchi Automaton (LDBA), then construct a product MDP between the automaton and the original MDP. A reward function is then assigned to the states of the product automaton, according to accepting conditions of the LDBA. With this reward function, our algorithm synthesizes a policy that satisfies the linear time property: as such, the policy synthesis procedure is "constrained" by the given specification. Additionally, we show that the RL procedure sets up an online value iteration method to calculate the maximum probability of satisfying the given property, at any given state of the MDP - a convergence proof for the procedure is provided. Finally, the performance of the algorithm is evaluated via a set of numerical examples. We observe an improvement of one order of magnitude in the number of iterations required for the synthesis compared to existing approaches.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.