We propose the convex floating body membership problem, which consists of efficiently determining when a query point $a\in\mathbb{R}^d$ belongs to the so-called $\varepsilon$-convex floating body of a given bounded convex domain $K\subset\mathbb{R}^d$. We consider this problem in an approximate setting, i.e., given a parameter $\delta>0$, the query can be answered either way if the Hilbert distance in $K$ of $a$ from the boundary of a relatively-scaled $\varepsilon$-convex floating body is less than $\delta$. We present a data structure for this problem that has storage size $O(\delta^{-d}\varepsilon^{-(d-1)/2})$ and achieves query time of $O({\delta^{-1}}\ln 1/\varepsilon)$. Our construction is motivated by a recent work of Abdelkader and Mount on APM queries, and relies on a comparison of convex floating bodies with balls in the Hilbert metric on $K$.
Language model approaches have recently been integrated into binary analysis tasks, such as function similarity detection and function signature recovery. These models typically employ a two-stage training process: pre-training via Masked Language Modeling (MLM) on machine code and fine-tuning for specific tasks. While MLM helps to understand binary code structures, it ignores essential code characteristics, including control and data flow, which negatively affect model generalization. Recent work leverages domain-specific features (e.g., control flow graphs and dynamic execution traces) in transformer-based approaches to improve binary code semantic understanding. However, this approach involves complex feature engineering, a cumbersome and time-consuming process that can introduce predictive uncertainty when dealing with stripped or obfuscated code, leading to a performance drop. In this paper, we introduce ProTST, a novel transformer-based methodology for binary code embedding. ProTST employs a hierarchical training process based on a unique tree-like structure, where knowledge progressively flows from fundamental tasks at the root to more specialized tasks at the leaves. This progressive teacher-student paradigm allows the model to build upon previously learned knowledge, resulting in high-quality embeddings that can be effectively leveraged for diverse downstream binary analysis tasks. The effectiveness of ProTST is evaluated in seven binary analysis tasks, and the results show that ProTST yields an average validation score (F1, MRR, and Recall@1) improvement of 14.8% compared to traditional two-stage training and an average validation score of 10.7% compared to multimodal two-stage frameworks.
The sensitivity of machine learning algorithms to outliers, particularly in high-dimensional spaces, necessitates the development of robust methods. Within the framework of $\epsilon$-contamination model, where the adversary can inspect and replace up to $\epsilon$ fraction of the samples, a fundamental open question is determining the optimal rates for robust stochastic convex optimization (robust SCO), provided the samples under $\epsilon$-contamination. We develop novel algorithms that achieve minimax-optimal excess risk (up to logarithmic factors) under the $\epsilon$-contamination model. Our approach advances beyonds existing algorithms, which are not only suboptimal but also constrained by stringent requirements, including Lipschitzness and smoothness conditions on sample functions.Our algorithms achieve optimal rates while removing these restrictive assumptions, and notably, remain effective for nonsmooth but Lipschitz population risks.
Join order selection is a sub-field of query optimization that aims to find the optimal join order for an SQL query with the minimum cost. The challenge lies in the exponentially growing search space as the number of tables increases, making exhaustive enumeration impractical. Traditional optimizers use static heuristics to prune the search space, but they often fail to adapt to changes or improve based on feedback from the DBMS. Recent research addresses these limitations with Deep Reinforcement Learning (DRL), allowing models to use feedback to dynamically search for better join orders and enhance performance over time. Existing research primarily focuses on capturing join order sequences and their representations at various levels, with limited comparative analysis of reinforcement learning methods. In this paper, we propose GTDD, a novel framework that integrates Graph Neural Networks (GNN), Treestructured Long Short-Term Memory (Tree LSTM), and DuelingDQN. We conduct a series of experiments that demonstrate a clear advantage of GTDD over state-of the-art techniques.
A challenge in high-dimensional inverse problems is developing iterative solvers to find the accurate solution of regularized optimization problems with low computational cost. An important example is computed tomography (CT) where both image and data sizes are large and therefore the forward model is costly to evaluate. Since several years algorithms from stochastic optimization are used for tomographic image reconstruction with great success by subsampling the data. Here we propose a novel way how stochastic optimization can be used to speed up image reconstruction by means of image domain sketching such that at each iteration an image of different resolution is being used. Hence, we coin this algorithm ImaSk. By considering an associated saddle-point problem, we can formulate ImaSk as a gradient-based algorithm where the gradient is approximated in the same spirit as the stochastic average gradient am\'elior\'e (SAGA) and uses at each iteration one of these multiresolution operators at random. We prove that ImaSk is linearly converging for linear forward models with strongly convex regularization functions. Numerical simulations on CT show that ImaSk is effective and increasing the number of multiresolution operators reduces the computational time to reach the modeled solution.
We study the problem of privately releasing an approximate minimum spanning tree (MST). Given a graph $G = (V, E, \vec{W})$ where $V$ is a set of $n$ vertices, $E$ is a set of $m$ undirected edges, and $ \vec{W} \in \mathbb{R}^{|E|} $ is an edge-weight vector, our goal is to publish an approximate MST under edge-weight differential privacy, as introduced by Sealfon in PODS 2016, where $V$ and $E$ are considered public and the weight vector is private. Our neighboring relation is $\ell_\infty$-distance on weights: for a sensitivity parameter $\Delta_\infty$, graphs $ G = (V, E, \vec{W}) $ and $ G' = (V, E, \vec{W}') $ are neighboring if $\|\vec{W}-\vec{W}'\|_\infty \leq \Delta_\infty$. Existing private MST algorithms face a trade-off, sacrificing either computational efficiency or accuracy. We show that it is possible to get the best of both worlds: With a suitable random perturbation of the input that does not suffice to make the weight vector private, the result of any non-private MST algorithm will be private and achieves a state-of-the-art error guarantee. Furthermore, by establishing a connection to Private Top-k Selection [Steinke and Ullman, FOCS '17], we give the first privacy-utility trade-off lower bound for MST under approximate differential privacy, demonstrating that the error magnitude, $\tilde{O}(n^{3/2})$, is optimal up to logarithmic factors. That is, our approach matches the time complexity of any non-private MST algorithm and at the same time achieves optimal error. We complement our theoretical treatment with experiments that confirm the practicality of our approach.
In structured additive distributional regression, the conditional distribution of the response variables given the covariate information and the vector of model parameters is modelled using a P-parametric probability density function where each parameter is modelled through a linear predictor and a bijective response function that maps the domain of the predictor into the domain of the parameter. We present a method to perform inference in structured additive distributional regression using stochastic variational inference. We propose two strategies for constructing a multivariate Gaussian variational distribution to estimate the posterior distribution of the regression coefficients. The first strategy leverages covariate information and hyperparameters to learn both the location vector and the precision matrix. The second strategy tackles the complexity challenges of the first by initially assuming independence among all smooth terms and then introducing correlations through an additional set of variational parameters. Furthermore, we present two approaches for estimating the smoothing parameters. The first treats them as free parameters and provides point estimates, while the second accounts for uncertainty by applying a variational approximation to the posterior distribution. Our model was benchmarked against state-of-the-art competitors in logistic and gamma regression simulation studies. Finally, we validated our approach by comparing its posterior estimates to those obtained using Markov Chain Monte Carlo on a dataset of patents from the biotechnology/pharmaceutics and semiconductor/computer sectors.
We consider maximizing an unknown monotonic, submodular set function $f: 2^{[n]} \rightarrow [0,1]$ with cardinality constraint under stochastic bandit feedback. At each time $t=1,\dots,T$ the learner chooses a set $S_t \subset [n]$ with $|S_t| \leq k$ and receives reward $f(S_t) + \eta_t$ where $\eta_t$ is mean-zero sub-Gaussian noise. The objective is to minimize the learner's regret with respect to an approximation of the maximum $f(S_*)$ with $|S_*| = k$, obtained through robust greedy maximization of $f$. To date, the best regret bound in the literature scales as $k n^{1/3} T^{2/3}$. And by trivially treating every set as a unique arm one deduces that $\sqrt{ {n \choose k} T }$ is also achievable using standard multi-armed bandit algorithms. In this work, we establish the first minimax lower bound for this setting that scales like $\tilde{\Omega}(\min_{L \le k}(L^{1/3}n^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$. For a slightly restricted algorithm class, we prove a stronger regret lower bound of $\tilde{\Omega}(\min_{L \le k}(Ln^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$. Moreover, we propose an algorithm Sub-UCB that achieves regret $\tilde{\mathcal{O}}(\min_{L \le k}(Ln^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$ capable of matching the lower bound on regret for the restricted class up to logarithmic factors.
Holographic multiple-input multiple-output (HMIMO) utilizes a compact antenna array to form a nearly continuous aperture, thereby enhancing higher capacity and more flexible configurations compared with conventional MIMO systems, making it attractive in current scientific research. Key questions naturally arise regarding the potential of HMIMO to surpass Shannon's theoretical limits and how far its capabilities can be extended. However, the traditional Shannon information theory falls short in addressing these inquiries because it only focuses on the information itself while neglecting the underlying carrier, electromagnetic (EM) waves, and environmental interactions. To fill up the gap between the theoretical analysis and the practical application for HMIMO systems, we introduce electromagnetic information theory (EIT) in this paper. This paper begins by laying the foundation for HMIMO-oriented EIT, encompassing EM wave equations and communication regions. In the context of HMIMO systems, the resultant physical limitations are presented, involving Chu's limit, Harrington's limit, Hannan's limit, and the evaluation of coupling effects. Field sampling and HMIMO-assisted oversampling are also discussed to guide the optimal HMIMO design within the EIT framework. To comprehensively depict the EM-compliant propagation process, we present the approximate and exact channel modeling approaches in near-/far-field zones. Furthermore, we discuss both traditional Shannon's information theory, employing the probabilistic method, and Kolmogorov information theory, utilizing the functional analysis, for HMIMO-oriented EIT systems.
Gaussian Process differential equations (GPODE) have recently gained momentum due to their ability to capture dynamics behavior of systems and also represent uncertainty in predictions. Prior work has described the process of training the hyperparameters and, thereby, calibrating GPODE to data. How to design efficient algorithms to collect data for training GPODE models is still an open field of research. Nevertheless high-quality training data is key for model performance. Furthermore, data collection leads to time-cost and financial-cost and might in some areas even be safety critical to the system under test. Therefore, algorithms for safe and efficient data collection are central for building high quality GPODE models. Our novel Safe Active Learning (SAL) for GPODE algorithm addresses this challenge by suggesting a mechanism to propose efficient and non-safety-critical data to collect. SAL GPODE does so by sequentially suggesting new data, measuring it and updating the GPODE model with the new data. In this way, subsequent data points are iteratively suggested. The core of our SAL GPODE algorithm is a constrained optimization problem maximizing information of new data for GPODE model training constrained by the safety of the underlying system. We demonstrate our novel SAL GPODE's superiority compared to a standard, non-active way of measuring new data on two relevant examples.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.