亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The current study proposes an innovative methodology for the profiling of psychological traits of Operations Management (OM) and Supply Chain Management (SCM) professionals. We use innovative methods and tools of text mining and social network analysis to map the demand for relevant skills from a set of job descriptions, with a focus on psychological characteristics. The proposed approach aims to evaluate the market demand for specific traits by combining relevant psychological constructs, text mining techniques, and an innovative measure, namely, the Semantic Brand Score. We apply the proposed methodology to a dataset of job descriptions for OM and SCM professionals, with the objective of providing a mapping of their relevant required skills, including psychological characteristics. In addition, the analysis is then detailed by considering the region of the organization that issues the job description, its organizational size, and the seniority level of the open position in order to understand their nuances. Finally, topic modeling is used to examine key components and their relative significance in job descriptions. By employing a novel methodology and considering contextual factors, we provide an innovative understanding of the attitudinal traits that differentiate professionals. This research contributes to talent management, recruitment practices, and professional development initiatives, since it provides new figures and perspectives to improve the effectiveness and success of Operations Management and Supply Chain Management professionals.

相關內容

文本數據挖掘(Text Mining)是指從文本數據中抽取有價值的信息和知識的計算機處理技術。

This paper contributes to the study of optimal experimental design for Bayesian inverse problems governed by partial differential equations (PDEs). We derive estimates for the parametric regularity of multivariate double integration problems over high-dimensional parameter and data domains arising in Bayesian optimal design problems. We provide a detailed analysis for these double integration problems using two approaches: a full tensor product and a sparse tensor product combination of quasi-Monte Carlo (QMC) cubature rules over the parameter and data domains. Specifically, we show that the latter approach significantly improves the convergence rate, exhibiting performance comparable to that of QMC integration of a single high-dimensional integral. Furthermore, we numerically verify the predicted convergence rates for an elliptic PDE problem with an unknown diffusion coefficient in two spatial dimensions, offering empirical evidence supporting the theoretical results and highlighting practical applicability.

Purpose: Most studies evaluating artificial intelligence (AI) models that detect abnormalities in neuroimaging are either tested on unrepresentative patient cohorts or are insufficiently well-validated, leading to poor generalisability to real-world tasks. The aim was to determine the diagnostic test accuracy and summarise the evidence supporting the use of AI models performing first-line, high-volume neuroimaging tasks. Methods: Medline, Embase, Cochrane library and Web of Science were searched until September 2021 for studies that temporally or externally validated AI capable of detecting abnormalities in first-line CT or MR neuroimaging. A bivariate random-effects model was used for meta-analysis where appropriate. PROSPERO: CRD42021269563. Results: Only 16 studies were eligible for inclusion. Included studies were not compromised by unrepresentative datasets or inadequate validation methodology. Direct comparison with radiologists was available in 4/16 studies. 15/16 had a high risk of bias. Meta-analysis was only suitable for intracranial haemorrhage detection in CT imaging (10/16 studies), where AI systems had a pooled sensitivity and specificity 0.90 (95% CI 0.85 - 0.94) and 0.90 (95% CI 0.83 - 0.95) respectively. Other AI studies using CT and MRI detected target conditions other than haemorrhage (2/16), or multiple target conditions (4/16). Only 3/16 studies implemented AI in clinical pathways, either for pre-read triage or as post-read discrepancy identifiers. Conclusion: The paucity of eligible studies reflects that most abnormality detection AI studies were not adequately validated in representative clinical cohorts. The few studies describing how abnormality detection AI could impact patients and clinicians did not explore the full ramifications of clinical implementation.

Single-Photon Emission Computed Tomography (SPECT) left ventricular assessment protocols are important for detecting ischemia in high-risk patients. To quantitatively measure myocardial function, clinicians depend on commercially available solutions to segment and reorient the left ventricle (LV) for evaluation. Based on large normal datasets, the segmentation performance and the high price of these solutions can hinder the availability of reliable and precise localization of the LV delineation. To overcome the aforementioned shortcomings this paper aims to give a recipe for diagnostic centers as well as for clinics to automatically segment the myocardium based on small and low-quality labels on reconstructed SPECT, complete field-of-view (FOV) volumes. A combination of Continuous Max-Flow (CMF) with prior shape information is developed to augment the 3D U-Net self-supervised learning (SSL) approach on various geometries of SPECT apparatus. Experimental results on the acquired dataset have shown a 5-10\% increase in quantitative metrics based on the previous State-of-the-Art (SOTA) solutions, suggesting a good plausible way to tackle the few-shot SSL problem on high-noise SPECT cardiac datasets.

This thesis is a corpus-based, quantitative, and typological analysis of the functions of Early Slavic participle constructions and their finite competitors ($jegda$-'when'-clauses). The first part leverages detailed linguistic annotation on Early Slavic corpora at the morphosyntactic, dependency, information-structural, and lexical levels to obtain indirect evidence for different potential functions of participle clauses and their main finite competitor and understand the roles of compositionality and default discourse reasoning as explanations for the distribution of participle constructions and $jegda$-clauses in the corpus. The second part uses massively parallel data to analyze typological variation in how languages express the semantic space of English $when$, whose scope encompasses that of Early Slavic participle constructions and $jegda$-clauses. Probabilistic semantic maps are generated and statistical methods (including Kriging, Gaussian Mixture Modelling, precision and recall analysis) are used to induce cross-linguistically salient dimensions from the parallel corpus and to study conceptual variation within the semantic space of the hypothetical concept WHEN.

In the realm of cost-sharing mechanisms, the vulnerability to Sybil strategies -- also known as false-name strategies, where agents create fake identities to manipulate outcomes -- has not yet been studied. In this paper, we delve into the details of different cost-sharing mechanisms proposed in the literature, highlighting their non-Sybil-resistant nature. Furthermore, we prove no deterministic, anonymous, truthful, Sybil-proof, upper semicontinuous, and individually rational cost-sharing mechanism for public excludable goods is better than $\Omega(n)$-approximate. This finding reveals an exponential increase in the worst-case social cost in environments where agents are restricted from using Sybil strategies. To circumvent these negative results, we introduce the concept of \textit{Sybil Welfare Invariant} mechanisms, where a mechanism does not decrease its welfare under Sybil strategies when agents choose weak dominant strategies and have subjective prior beliefs over other players' actions. Finally, we prove that the Shapley value mechanism for symmetric and submodular cost functions holds this property, and so deduce that the worst-case social cost of this mechanism is the $n$th harmonic number $\mathcal H_n$ under equilibrium with Sybil strategies, matching the worst-case social cost bound for cost-sharing mechanisms. This finding suggests that any group of agents, each with private valuations, can fund public excludable goods both permissionless and anonymously, achieving efficiency comparable to that of non-anonymous domains, even when the total number of participants is unknown.ess and anonymously, achieving efficiency comparable to that of permissioned and non-anonymous domains, even when the total number of participants is unknown.

We revisit the problem of the existence of the maximum likelihood estimate for multi-class logistic regression. We show that one method of ensuring its existence is by assigning positive probability to every class in the sample dataset. The notion of data separability is not needed, which is in contrast to the classical set up of multi-class logistic regression in which each data sample belongs to one class. We also provide a general and constructive estimate of the convergence rate to the maximum likelihood estimate when gradient descent is used as the optimizer. Our estimate involves bounding the condition number of the Hessian of the maximum likelihood function. The approaches used in this article rely on a simple operator-theoretic framework.

This study investigates the metacognitive capabilities of Large Language Models relative to human metacognition in the context of the International Coaching Federation ICF mimicking exam, a situational judgment test related to coaching competencies. Using a mixed method approach, we assessed the metacognitive performance, including sensitivity, accuracy in probabilistic predictions, and bias, of human participants and five advanced LLMs (GPT-4, Claude-3-Opus 3, Mistral Large, Llama 3, and Gemini 1.5 Pro). The results indicate that LLMs outperformed humans across all metacognitive metrics, particularly in terms of reduced overconfidence, compared to humans. However, both LLMs and humans showed less adaptability in ambiguous scenarios, adhering closely to predefined decision frameworks. The study suggests that Generative AI can effectively engage in human-like metacognitive processing without conscious awareness. Implications of the study are discussed in relation to development of AI simulators that scaffold cognitive and metacognitive aspects of mastering coaching competencies. More broadly, implications of these results are discussed in relation to development of metacognitive modules that lead towards more autonomous and intuitive AI systems.

An additive Runge-Kutta method is used for the time stepping, which integrates the linear stiff terms by an explicit singly diagonally implicit Runge-Kutta (ESDIRK) method and the nonlinear terms by an explicit Runge-Kutta (ERK) method. In each time step, the implicit solve is performed by the recently developed Hierarchical Poincar\'e-Steklov (HPS) method. This is a fast direct solver for elliptic equations that decomposes the space domain into a hierarchical tree of subdomains and builds spectral collocation solvers locally on the subdomains. These ideas are naturally combined in the presented method since the singly diagonal coefficient in ESDIRK and a fixed time-step ensures that the coefficient matrix in the implicit solve of HPS remains the same for all time stages. This means that the precomputed inverse can be efficiently reused, leading to a scheme with complexity (in two dimensions) $\mathcal{O}(N^{1.5})$ for the precomputation where the solution operator to the elliptic problems is built, and then $\mathcal{O}(N \log N)$ for the solve in each time step. The stability of the method is proved for first order in time and any order in space, and numerical evidence substantiates a claim of stability for a much broader class of time discretization methods. Numerical experiments supporting the accuracy of efficiency of the method in one and two dimensions are presented.

The Robbins estimator is the most iconic and widely used procedure in the empirical Bayes literature for the Poisson model. On one hand, this method has been recently shown to be minimax optimal in terms of the regret (excess risk over the Bayesian oracle that knows the true prior) for various nonparametric classes of priors. On the other hand, it has been long recognized in practice that Robbins estimator lacks the desired smoothness and monotonicity of Bayes estimators and can be easily derailed by those data points that were rarely observed before. Based on the minimum-distance distance method, we propose a suite of empirical Bayes estimators, including the classical nonparametric maximum likelihood, that outperform the Robbins method in a variety of synthetic and real data sets and retain its optimality in terms of minimax regret.

In this study, explainable machine learning techniques are applied to predict the toxicity of mussels in the Gulf of Trieste (Adriatic Sea) caused by harmful algal blooms. By analysing a newly created 28-year dataset containing records of toxic phytoplankton in mussel farming areas and toxin concentrations in mussels (Mytilus galloprovincialis), we train and evaluate the performance of ML models to accurately predict diarrhetic shellfish poisoning (DSP) events. The random forest model provided the best prediction of positive toxicity results based on the F1 score. Explainability methods such as permutation importance and SHAP identified key species (Dinophysis fortii and D. caudata) and environmental factors (salinity, river discharge and precipitation) as the best predictors of DSP outbreaks. These findings are important for improving early warning systems and supporting sustainable aquaculture practices.

北京阿比特科技有限公司