亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Policy Iteration (PI) is a widely used family of algorithms to compute optimal policies for Markov Decision Problems (MDPs). We derive upper bounds on the running time of PI on Deterministic MDPs (DMDPs): the class of MDPs in which every state-action pair has a unique next state. Our results include a non-trivial upper bound that applies to the entire family of PI algorithms; another to all "max-gain" switching variants; and affirmation that a conjecture regarding Howard's PI on MDPs is true for DMDPs. Our analysis is based on certain graph-theoretic results, which may be of independent interest.

相關內容

Large Language Models (LLM) continue to demonstrate their utility in a variety of emergent capabilities in different fields. An area that could benefit from effective language understanding in cybersecurity is the analysis of log files. This work explores LLMs with different architectures (BERT, RoBERTa, DistilRoBERTa, GPT-2, and GPT-Neo) that are benchmarked for their capacity to better analyze application and system log files for security. Specifically, 60 fine-tuned language models for log analysis are deployed and benchmarked. The resulting models demonstrate that they can be used to perform log analysis effectively with fine-tuning being particularly important for appropriate domain adaptation to specific log types. The best-performing fine-tuned sequence classification model (DistilRoBERTa) outperforms the current state-of-the-art; with an average F1-Score of 0.998 across six datasets from both web application and system log sources. To achieve this, we propose and implement a new experimentation pipeline (LLM4Sec) which leverages LLMs for log analysis experimentation, evaluation, and analysis.

We study the theoretical aspects of Reinforced Language Models (RLMs) from a bi-objective optimization perspective. Specifically, we consider the RLMs as a Pareto optimization problem that maximizes the two conflicting objectives, i.e., reward objective and likelihood objectives, simultaneously. Our main contribution consists of three parts. First, we establish the theoretical foundations of RLM as a Pareto optimization problem by presenting Reward Upper BOund (RUBO) and Pareto optimality. Our theoretical outcomes are supported by not only deductive proofs but also empirical results. Second, we propose Reward Dropout, a simple yet powerful method that guarantees to improve a bi-objective optimization of RLM. Lastly, we demonstrate that the Reward Dropout is consistently effective across five benchmark datasets and four benchmark LLMs, meaning that the Reward Dropout significantly improves the optimization performance of RLMs.

The ability to detect manipulation in multimedia data is vital in digital forensics. Existing Image Manipulation Detection (IMD) methods are mainly based on detecting anomalous features arisen from image editing or double compression artifacts. All existing IMD techniques encounter challenges when it comes to detecting small tampered regions from a large image. Moreover, compression-based IMD approaches face difficulties in cases of double compression of identical quality factors. To investigate the State-of-The-Art (SoTA) IMD methods in those challenging conditions, we introduce a new Challenging Image Manipulation Detection (CIMD) benchmark dataset, which consists of two subsets, for evaluating editing-based and compression-based IMD methods, respectively. The dataset images were manually taken and tampered with high-quality annotations. In addition, we propose a new two-branch network model based on HRNet that can better detect both the image-editing and compression artifacts in those challenging conditions. Extensive experiments on the CIMD benchmark show that our model significantly outperforms SoTA IMD methods on CIMD.

Linear structural causal models (SCMs) are used to express and analyse the relationships between random variables. Direct causal effects are represented as directed edges and confounding factors as bidirected edges. Identifying the causal parameters from correlations between the nodes is an open problem in artificial intelligence. In this paper, we study SCMs whose directed component forms a tree. Van der Zander et al. (AISTATS'22, PLMR 151, pp. 6770--6792, 2022) give a PSPACE-algorithm for the identification problem in this case, which is a significant improvement over the general Gr\"obner basis approach, which has doubly-exponential time complexity in the number of structural parameters. In this work, we present a randomized polynomial-time algorithm, which solves the identification problem for tree-shaped SCMs. For every structural parameter, our algorithms decides whether it is generically identifiable, generically 2-identifiable, or generically unidentifiable. (No other cases can occur.) In the first two cases, it provides one or two fractional affine square root terms of polynomials (FASTPs) for the corresponding parameter, respectively.

We propose a novel approach for generalizing the following rigid-body dynamics algorithms: Recursive Newton-Euler Algorithm, Articulated-Body Algorithm, and Extended-Force-Propagator Algorithm. The classic versions of these recursive algorithms require systems to have an open chain structure. Dealing with closed-chains has, conventionally, required different algorithms. In this paper, we demonstrate that the classic recursive algorithms can be modified to work for closed-chain mechanisms. The critical insight of our generalized algorithms is the clustering of bodies involved in local loop constraints. Clustering bodies enables loop constraints to be resolved locally, i.e., only when that group of bodies is encountered during a forward or backward pass. This local treatment avoids the need for large-scale matrix factorization. We provide self-contained derivations of the algorithms using familiar, physically meaningful concepts. Overall, our approach provides a foundation for simulating robotic systems with traditionally difficult-to-simulate designs, such as geared motors, differential drives, and four-bar mechanisms. The performance of our library of algorithms is validated numerically in C++ on various modern legged robots: the MIT Mini Cheetah, the MIT Humanoid, the UIUC Tello Humanoid, and a modified version of the JVRC-1 Humanoid. Our algorithms are shown to outperform state-of-the-art algorithms for computing constrained rigid-body dynamics.

In recent years, Low Earth Orbit (LEO) satellites have witnessed rapid development, with inference based on Deep Neural Network (DNN) models emerging as the prevailing technology for remote sensing satellite image recognition. However, the substantial computation capability and energy demands of DNN models, coupled with the instability of the satellite-ground link, pose significant challenges, burdening satellites with limited power intake and hindering the timely completion of tasks. Existing approaches, such as transmitting all images to the ground for processing or executing DNN models on the satellite, is unable to effectively address this issue. By exploiting the internal hierarchical structure of DNNs and treating each layer as an independent subtask, we propose a satellite-ground collaborative computation partial offloading approach to address this challenge. We formulate the problem of minimizing the inference task execution time and onboard energy consumption through offloading as an integer linear programming (ILP) model. The complexity in solving the problem arises from the combinatorial explosion in the discrete solution space. To address this, we have designed an improved optimization algorithm based on branch and bound. Simulation results illustrate that, compared to the existing approaches, our algorithm improve the performance by 10%-18%

Artificial Intelligence (AI), particularly through the advent of large-scale generative AI (GenAI) models such as Large Language Models (LLMs), has become a transformative element in contemporary technology. While these models have unlocked new possibilities, they simultaneously present significant challenges, such as concerns over data privacy and the propensity to generate misleading or fabricated content. Current frameworks for Responsible AI (RAI) often fall short in providing the granular guidance necessary for tangible application, especially for Accountability-a principle that is pivotal for ensuring transparent and auditable decision-making, bolstering public trust, and meeting increasing regulatory expectations. This study bridges the accountability gap by introducing a comprehensive metrics catalogue, formulated through a systematic multivocal literature review (MLR) that integrates findings from both academic and grey literature. Our catalogue delineates process metrics that underpin procedural integrity, resource metrics that provide necessary tools and frameworks, and product metrics that reflect the outputs of AI systems. This tripartite framework is designed to operationalize Accountability in AI, with a special emphasis on addressing the intricacies of GenAI. The proposed metrics catalogue provides a robust framework for instilling Accountability in AI systems. It offers practical, actionable guidance for organizations, thereby shaping responsible practices in the field.

Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司