亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Text-based knowledge graph completion (KGC) methods, leveraging textual entity descriptions are at the research forefront. The efficacy of these models hinges on the quality of the textual data. This study explores whether enriched or more efficient textual descriptions can amplify model performance. Recently, Large Language Models (LLMs) have shown remarkable improvements in NLP tasks, attributed to their sophisticated text generation and conversational capabilities. LLMs assimilate linguistic patterns and integrate knowledge from their training data. Compared to traditional databases like Wikipedia, LLMs provide several advantages, facilitating broader information querying and content augmentation. We hypothesize that LLMs, without fine-tuning, can refine entity descriptions, serving as an auxiliary knowledge source. An in-depth analysis was conducted to verify this hypothesis. We found that (1) without fine-tuning, LLMs have the capability to further improve the quality of entity text descriptions. We validated this through experiments on the FB15K-237 and WN18RR datasets. (2) LLMs exhibit text generation hallucination issues and selectively output words with multiple meanings. This was mitigated by contextualizing prompts to constrain LLM outputs. (3) Larger model sizes do not necessarily guarantee better performance; even the 7B model can achieve optimized results in this comparative task. These findings underscore the untapped potential of large models in text-based KGC, which is a promising direction for further research in KGC. The code and datasets are accessible at \href{//github.com/sjlmg/CP-KGC}.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · BASIC · 語言模型化 · MoDELS · 大語言模型 ·
2024 年 2 月 28 日

We find that the best publicly available LLMs like GPT-4, Claude, and {PaLM 2} currently perform poorly at basic legal text handling. We introduce a benchmark consisting of tasks that lawyers and paralegals would expect LLMs to handle zero-shot, such as looking up the text at a line of a witness deposition or at a subsection of a contract. LLMs' poor performance on this benchmark casts into doubt their reliability as-is for legal practice. However, fine-tuning for these tasks brings even a smaller model to near-perfect performance on our test set and also raises performance on a related legal task. These results suggest that many simple behaviors needed for a domain may not be present in foundational LLMs, without additional engagement from subject matter experts.

This paper discusses algorithmic resignation, a strategic approach for managing the use of AI systems within organizations. Algorithmic resignation involves the deliberate and informed disengagement from AI assistance in certain scenarios, by embedding governance mechanisms directly into AI systems. Our proposal is not merely about disuse of AI but includes guiding when and how these systems should be used or avoided. We discuss the multifaceted benefits of algorithmic resignation, spanning economic efficiency, reputational gains, and legal compliance. Further, we outline the operationalization of resignation through various methods such as positive and negative nudges, stakeholder incentive alignment, and careful consideration of the level of AI engagement. Using techniques like barring access to AI outputs selectively or providing explicit disclaimers on system performance, algorithmic resignation not only mitigates risks associated with AI but also leverages its benefits, ensuring the responsible and effective use of AI systems.

Knowledge graph embeddings (KGE) have been validated as powerful methods for inferring missing links in knowledge graphs (KGs) that they typically map entities into Euclidean space and treat relations as transformations of entities. Recently, some Euclidean KGE methods have been enhanced to model semantic hierarchies commonly found in KGs, improving the performance of link prediction. To embed hierarchical data, hyperbolic space has emerged as a promising alternative to traditional Euclidean space, offering high fidelity and lower memory consumption. Unlike Euclidean, hyperbolic space provides countless curvatures to choose from. However, it is difficult for existing hyperbolic KGE methods to obtain the optimal curvature settings manually, thereby limiting their ability to effectively model semantic hierarchies. To address this limitation, we propose a novel KGE model called $\textbf{Hyp}$erbolic $\textbf{H}$ierarchical $\textbf{KGE}$ (HypHKGE). This model introduces attention-based learnable curvatures for hyperbolic space, which helps preserve rich semantic hierarchies. Furthermore, to utilize the preserved hierarchies for inferring missing links, we define hyperbolic hierarchical transformations based on the theory of hyperbolic geometry, including both inter-level and intra-level modeling. Experiments demonstrate the effectiveness of the proposed HypHKGE model on the three benchmark datasets (WN18RR, FB15K-237, and YAGO3-10). The source code will be publicly released at //github.com/wjzheng96/HypHKGE.

Causal graph recovery is essential in the field of causal inference. Traditional methods are typically knowledge-based or statistical estimation-based, which are limited by data collection biases and individuals' knowledge about factors affecting the relations between variables of interests. The advance of large language models (LLMs) provides opportunities to address these problems. We propose a novel method that utilizes the extensive knowledge contained within a large corpus of scientific literature to deduce causal relationships in general causal graph recovery tasks. This method leverages Retrieval Augmented-Generation (RAG) based LLMs to systematically analyze and extract pertinent information from a comprehensive collection of research papers. Our method first retrieves relevant text chunks from the aggregated literature. Then, the LLM is tasked with identifying and labelling potential associations between factors. Finally, we give a method to aggregate the associational relationships to build a causal graph. We demonstrate our method is able to construct high quality causal graphs on the well-known SACHS dataset solely from literature.

Hyper-relational knowledge graphs (KGs) contain additional key-value pairs, providing more information about the relations. In many scenarios, the same relation can have distinct key-value pairs, making the original triple fact more recognizable and specific. Prior studies on hyper-relational KGs have established a solid standard method for hyper-relational graph encoding. In this work, we propose a message-passing-based graph encoder with global relation structure awareness ability, which we call ReSaE. Compared to the prior state-of-the-art approach, ReSaE emphasizes the interaction of relations during message passing process and optimizes the readout structure for link prediction tasks. Overall, ReSaE gives a encoding solution for hyper-relational KGs and ensures stronger performance on downstream link prediction tasks. Our experiments demonstrate that ReSaE achieves state-of-the-art performance on multiple link prediction benchmarks. Furthermore, we also analyze the influence of different model structures on model performance.

Modern generative search engines enhance the reliability of large language model (LLM) responses by providing cited evidence. However, evaluating the answer's attribution, i.e., whether every claim within the generated responses is fully supported by its cited evidence, remains an open problem. This verification, traditionally dependent on costly human evaluation, underscores the urgent need for automatic attribution evaluation methods. To bridge the gap in the absence of standardized benchmarks for these methods, we present AttributionBench, a comprehensive benchmark compiled from various existing attribution datasets. Our extensive experiments on AttributionBench reveal the challenges of automatic attribution evaluation, even for state-of-the-art LLMs. Specifically, our findings show that even a fine-tuned GPT-3.5 only achieves around 80% macro-F1 under a binary classification formulation. A detailed analysis of more than 300 error cases indicates that a majority of failures stem from the model's inability to process nuanced information, and the discrepancy between the information the model has access to and that human annotators do.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.

北京阿比特科技有限公司