Pedestrian intention prediction is crucial for autonomous driving. In particular, knowing if pedestrians are going to cross in front of the ego-vehicle is core to performing safe and comfortable maneuvers. Creating accurate and fast models that predict such intentions from sequential images is challenging. A factor contributing to this is the lack of datasets with diverse crossing and non-crossing (C/NC) scenarios. We address this scarceness by introducing a framework, named ARCANE, which allows programmatically generating synthetic datasets consisting of C/NC video clip samples. As an example, we use ARCANE to generate a large and diverse dataset named PedSynth. We will show how PedSynth complements widely used real-world datasets such as JAAD and PIE, so enabling more accurate models for C/NC prediction. Considering the onboard deployment of C/NC prediction models, we also propose a deep model named PedGNN, which is fast and has a very low memory footprint. PedGNN is based on a GNN-GRU architecture that takes a sequence of pedestrian skeletons as input to predict crossing intentions.
Stable matching is a fundamental problem studied both in economics and computer science. The task is to find a matching between two sides of agents that have preferences over who they want to be matched with. A matching is stable if no pair of agents prefer each other over their current matches. The deferred acceptance algorithm of Gale and Shapley solves this problem in polynomial time. Further, it is a mechanism: the proposing side in the algorithm is always incentivised to report their preferences truthfully. The deferred acceptance algorithm has a natural interpretation as a distributed algorithm (and thus a distributed mechanism). However, the algorithm is slow in the worst case and it is known that the stable matching problem cannot be solved efficiently in the distributed setting. In this work we study a natural special case of the stable matching problem where all agents on one side share common preferences. We show that in this case the deferred acceptance algorithm does yield a fast and truthful distributed mechanism for finding a stable matching. We show how algorithms for sampling random colorings can be used to break ties fairly and extend the results to fractional stable matching.
The aquaculture sector in New Zealand is experiencing rapid expansion, with a particular emphasis on mussel exports. As the demands of mussel farming operations continue to evolve, the integration of artificial intelligence and computer vision techniques, such as intelligent object detection, is emerging as an effective approach to enhance operational efficiency. This study delves into advancing buoy detection by leveraging deep learning methodologies for intelligent mussel farm monitoring and management. The primary objective centers on improving accuracy and robustness in detecting buoys across a spectrum of real-world scenarios. A diverse dataset sourced from mussel farms is captured and labeled for training, encompassing imagery taken from cameras mounted on both floating platforms and traversing vessels, capturing various lighting and weather conditions. To establish an effective deep learning model for buoy detection with a limited number of labeled data, we employ transfer learning techniques. This involves adapting a pre-trained object detection model to create a specialized deep learning buoy detection model. We explore different pre-trained models, including YOLO and its variants, alongside data diversity to investigate their effects on model performance. Our investigation demonstrates a significant enhancement in buoy detection performance through deep learning, accompanied by improved generalization across diverse weather conditions, highlighting the practical effectiveness of our approach.
Numerical solution of discrete PDEs corresponding to saddle point problems is highly relevant to physical systems such as Stokes flow. However, scaling up numerical solvers for such systems is often met with challenges in efficiency and convergence. Multigrid is an approach with excellent applicability to elliptic problems such as the Stokes equations, and can be a solution to such challenges of scalability and efficiency. The degree of success of such methods, however, is highly contingent on the design of key components of a multigrid scheme, including the hierarchy of discretizations, and the relaxation scheme used. Additionally, in many practical cases, it may be more effective to use a multigrid scheme as a preconditioner to an iterative Krylov subspace solver, as opposed to striving for maximum efficacy of the relaxation scheme in all foreseeable settings. In this paper, we propose an efficient symmetric multigrid preconditioner for the Stokes Equations on a staggered finite-difference discretization. Our contribution is focused on crafting a preconditioner that (a) is symmetric indefinite, matching the property of the Stokes system itself, (b) is appropriate for preconditioning the SQMR iterative scheme, and (c) has the requisite symmetry properties to be used in this context. In addition, our design is efficient in terms of computational cost and facilitates scaling to large domains.
We introduce a new interpretation of sparse variational approximations for Gaussian processes using inducing points, which can lead to more scalable algorithms than previous methods. It is based on decomposing a Gaussian process as a sum of two independent processes: one spanned by a finite basis of inducing points and the other capturing the remaining variation. We show that this formulation recovers existing approximations and at the same time allows to obtain tighter lower bounds on the marginal likelihood and new stochastic variational inference algorithms. We demonstrate the efficiency of these algorithms in several Gaussian process models ranging from standard regression to multi-class classification using (deep) convolutional Gaussian processes and report state-of-the-art results on CIFAR-10 among purely GP-based models.
We examine the possibility of approximating Maximum Vertex-Disjoint Shortest Paths. In this problem, the input is an edge-weighted (directed or undirected) $n$-vertex graph $G$ along with $k$ terminal pairs $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$. The task is to connect as many terminal pairs as possible by pairwise vertex-disjoint paths such that each path is a shortest path between the respective terminals. Our work is anchored in the recent breakthrough by Lochet [SODA '21], which demonstrates the polynomial-time solvability of the problem for a fixed value of $k$. Lochet's result implies the existence of a polynomial-time $ck$-approximation for Maximum Vertex-Disjoint Shortest Paths, where $c \leq 1$ is a constant. Our first result suggests that this approximation algorithm is, in a sense, the best we can hope for. More precisely, assuming the gap-ETH, we exclude the existence of an $o(k)$-approximations within $f(k) \cdot $poly($n$) time for any function $f$ that only depends on $k$. Our second result demonstrates the infeasibility of achieving an approximation ratio of $n^{\frac{1}{2}-\varepsilon}$ in polynomial time, unless P = NP. It is not difficult to show that a greedy algorithm selecting a path with the minimum number of arcs results in a $\lceil\sqrt{\ell}\rceil$-approximation, where $\ell$ is the number of edges in all the paths of an optimal solution. Since $\ell \leq n$, this underscores the tightness of the $n^{\frac{1}{2}-\varepsilon}$-inapproximability bound. Additionally, we establish that Maximum Vertex-Disjoint Shortest Paths is fixed-parameter tractable when parameterized by $\ell$ but does not admit a polynomial kernel. Our hardness results hold for undirected graphs with unit weights, while our positive results extend to scenarios where the input graph is directed and features arbitrary (non-negative) edge weights.
Symmetry manifests itself in legged locomotion in a variety of ways. No matter where a legged system begins to move periodically, the torso and limbs coordinate with each other's movements in a similar manner. Also, in many gaits observed in nature, the legs on both sides of the torso move in exactly the same way, sometimes they are just half a period out of phase. Furthermore, when some animals move forward and backward, their movements are strikingly similar as if the time had been reversed. This work aims to generalize these phenomena and propose formal definitions of symmetries in legged locomotion using group theory terminology. Symmetries in some common quadrupedal gaits such as pronking, bounding, half-bounding, and galloping have been discussed. Moreover, a spring-mass model has been used to demonstrate how breaking symmetries can alter gaits in a legged system. Studying the symmetries may provide insight into which gaits may be suitable for a particular robotic design, or may enable roboticists to design more agile and efficient robot controllers by using certain gaits.
Typical recommendation and ranking methods aim to optimize the satisfaction of users, but they are often oblivious to their impact on the items (e.g., products, jobs, news, video) and their providers. However, there has been a growing understanding that the latter is crucial to consider for a wide range of applications, since it determines the utility of those being recommended. Prior approaches to fairness-aware recommendation optimize a regularized objective to balance user satisfaction and item fairness based on some notion such as exposure fairness. These existing methods have been shown to be effective in controlling fairness, however, most of them are computationally inefficient, limiting their applications to only unrealistically small-scale situations. This indeed implies that the literature does not yet provide a solution to enable a flexible control of exposure in the industry-scale recommender systems where millions of users and items exist. To enable a computationally efficient exposure control even for such large-scale systems, this work develops a scalable, fast, and fair method called \emph{\textbf{ex}posure-aware \textbf{ADMM} (\textbf{exADMM})}. exADMM is based on implicit alternating least squares (iALS), a conventional scalable algorithm for collaborative filtering, but optimizes a regularized objective to achieve a flexible control of accuracy-fairness tradeoff. A particular technical challenge in developing exADMM is the fact that the fairness regularizer destroys the separability of optimization subproblems for users and items, which is an essential property to ensure the scalability of iALS. Therefore, we develop a set of optimization tools to enable yet scalable fairness control with provable convergence guarantees as a basis of our algorithm.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.
While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.