亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vision transformers have shown excellent performance in computer vision tasks. However, the computation cost of their (local) self-attention mechanism is expensive. Comparatively, CNN is more efficient with built-in inductive bias. Recent works show that CNN is promising to compete with vision transformers by learning their architecture design and training protocols. Nevertheless, existing methods either ignore multi-level features or lack dynamic prosperity, leading to sub-optimal performance. In this paper, we propose a novel attention mechanism named MCA, which captures different patterns of input images by multiple kernel sizes and enables input-adaptive weights with a gating mechanism. Based on MCA, we present a neural network named ConvFormer. ConvFormer adopts the general architecture of vision transformers, while replacing the (local) self-attention mechanism with our proposed MCA. Extensive experimental results demonstrated that ConvFormer outperforms similar size vision transformers(ViTs) and convolutional neural networks (CNNs) in various tasks. For example, ConvFormer-S, ConvFormer-L achieve state-of-the-art performance of 82.8%, 83.6% top-1 accuracy on ImageNet dataset. Moreover, ConvFormer-S outperforms Swin-T by 1.5 mIoU on ADE20K, and 0.9 bounding box AP on COCO with a smaller model size. Code and models will be available.

相關內容

Despite the excellent performance of large-scale vision-language pre-trained models (VLPs) on conventional visual question answering task, they still suffer from two problems: First, VLPs tend to rely on language biases in datasets and fail to generalize to out-of-distribution (OOD) data. Second, they are inefficient in terms of memory footprint and computation. Although promising progress has been made in both problems, most existing works tackle them independently. To facilitate the application of VLP to VQA tasks, it is imperative to jointly study VLP compression and OOD robustness, which, however, has not yet been explored. In this paper, we investigate whether a VLP can be compressed and debiased simultaneously by searching sparse and robust subnetworks. To this end, we conduct extensive experiments with LXMERT, a representative VLP, on the OOD dataset VQA-CP v2. We systematically study the design of a training and compression pipeline to search the subnetworks, as well as the assignment of sparsity to different modality-specific modules. Our results show that there indeed exist sparse and robust LXMERT subnetworks, which significantly outperform the full model (without debiasing) with much fewer parameters. These subnetworks also exceed the current SoTA debiasing models with comparable or fewer parameters. We will release the codes on publication.

Despite the rapid advance of unsupervised anomaly detection, existing methods require to train separate models for different objects. In this work, we present UniAD that accomplishes anomaly detection for multiple classes with a unified framework. Under such a challenging setting, popular reconstruction networks may fall into an "identical shortcut", where both normal and anomalous samples can be well recovered, and hence fail to spot outliers. To tackle this obstacle, we make three improvements. First, we revisit the formulations of fully-connected layer, convolutional layer, as well as attention layer, and confirm the important role of query embedding (i.e., within attention layer) in preventing the network from learning the shortcut. We therefore come up with a layer-wise query decoder to help model the multi-class distribution. Second, we employ a neighbor masked attention module to further avoid the information leak from the input feature to the reconstructed output feature. Third, we propose a feature jittering strategy that urges the model to recover the correct message even with noisy inputs. We evaluate our algorithm on MVTec-AD and CIFAR-10 datasets, where we surpass the state-of-the-art alternatives by a sufficiently large margin. For example, when learning a unified model for 15 categories in MVTec-AD, we surpass the second competitor on the tasks of both anomaly detection (from 88.1% to 96.5%) and anomaly localization (from 89.5% to 96.8%). Code is available at //github.com/zhiyuanyou/UniAD.

Weight pruning is among the most popular approaches for compressing deep convolutional neural networks. Recent work suggests that in a randomly initialized deep neural network, there exist sparse subnetworks that achieve performance comparable to the original network. Unfortunately, finding these subnetworks involves iterative stages of training and pruning, which can be computationally expensive. We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter. This leads to improved efficiency of convolutional architectures compared to existing methods that perform pruning at initialization. We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in ``efficient architectures.'' Extensive experiments on well-known CNN models and datasets show the effectiveness of the proposed method. Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.

Recent studies show that Vision Transformers(ViTs) exhibit strong robustness against various corruptions. Although this property is partly attributed to the self-attention mechanism, there is still a lack of systematic understanding. In this paper, we examine the role of self-attention in learning robust representations. Our study is motivated by the intriguing properties of the emerging visual grouping in Vision Transformers, which indicates that self-attention may promote robustness through improved mid-level representations. We further propose a family of fully attentional networks (FANs) that strengthen this capability by incorporating an attentional channel processing design. We validate the design comprehensively on various hierarchical backbones. Our model achieves a state of-the-art 87.1% accuracy and 35.8% mCE on ImageNet-1k and ImageNet-C with 76.8M parameters. We also demonstrate state-of-the-art accuracy and robustness in two downstream tasks: semantic segmentation and object detection. Code will be available at //github.com/NVlabs/FAN.

A novel Face Pyramid Vision Transformer (FPVT) is proposed to learn a discriminative multi-scale facial representations for face recognition and verification. In FPVT, Face Spatial Reduction Attention (FSRA) and Dimensionality Reduction (FDR) layers are employed to make the feature maps compact, thus reducing the computations. An Improved Patch Embedding (IPE) algorithm is proposed to exploit the benefits of CNNs in ViTs (e.g., shared weights, local context, and receptive fields) to model lower-level edges to higher-level semantic primitives. Within FPVT framework, a Convolutional Feed-Forward Network (CFFN) is proposed that extracts locality information to learn low level facial information. The proposed FPVT is evaluated on seven benchmark datasets and compared with ten existing state-of-the-art methods, including CNNs, pure ViTs, and Convolutional ViTs. Despite fewer parameters, FPVT has demonstrated excellent performance over the compared methods. Project page is available at //khawar-islam.github.io/fpvt/

BERT has shown a lot of sucess in a wide variety of NLP tasks. But it has a limitation dealing with long inputs due to its attention mechanism. Longformer, ETC and BigBird addressed this issue and effectively solved the quadratic dependency problem. However we find that these models are not sufficient, and propose LittleBird, a novel model based on BigBird with improved speed and memory footprint while maintaining accuracy. In particular, we devise a more flexible and efficient position representation method based on Attention with Linear Biases (ALiBi). We also show that replacing the method of global information represented in the BigBird with pack and unpack attention is more effective. The proposed model can work on long inputs even after being pre-trained on short inputs, and can be trained efficiently reusing existing pre-trained language model for short inputs. This is a significant benefit for low-resource languages where large amounts of long text data are difficult to obtain. As a result, our experiments show that LittleBird works very well in a variety of languages, achieving high performance in question answering tasks, particularly in KorQuAD2.0, Korean Question Answering Dataset for long paragraphs.

Transformer, first applied to the field of natural language processing, is a type of deep neural network mainly based on the self-attention mechanism. Thanks to its strong representation capabilities, researchers are looking at ways to apply transformer to computer vision tasks. In a variety of visual benchmarks, transformer-based models perform similar to or better than other types of networks such as convolutional and recurrent neural networks. Given its high performance and less need for vision-specific inductive bias, transformer is receiving more and more attention from the computer vision community. In this paper, we review these vision transformer models by categorizing them in different tasks and analyzing their advantages and disadvantages. The main categories we explore include the backbone network, high/mid-level vision, low-level vision, and video processing. We also include efficient transformer methods for pushing transformer into real device-based applications. Furthermore, we also take a brief look at the self-attention mechanism in computer vision, as it is the base component in transformer. Toward the end of this paper, we discuss the challenges and provide several further research directions for vision transformers.

Transformer, an attention-based encoder-decoder architecture, has revolutionized the field of natural language processing. Inspired by this significant achievement, some pioneering works have recently been done on adapting Transformerliked architectures to Computer Vision (CV) fields, which have demonstrated their effectiveness on various CV tasks. Relying on competitive modeling capability, visual Transformers have achieved impressive performance on multiple benchmarks such as ImageNet, COCO, and ADE20k as compared with modern Convolution Neural Networks (CNN). In this paper, we have provided a comprehensive review of over one hundred different visual Transformers for three fundamental CV tasks (classification, detection, and segmentation), where a taxonomy is proposed to organize these methods according to their motivations, structures, and usage scenarios. Because of the differences in training settings and oriented tasks, we have also evaluated these methods on different configurations for easy and intuitive comparison instead of only various benchmarks. Furthermore, we have revealed a series of essential but unexploited aspects that may empower Transformer to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between visual and sequential Transformers. Finally, three promising future research directions are suggested for further investment.

Convolutional neural networks (CNN) are the dominant deep neural network (DNN) architecture for computer vision. Recently, Transformer and multi-layer perceptron (MLP)-based models, such as Vision Transformer and MLP-Mixer, started to lead new trends as they showed promising results in the ImageNet classification task. In this paper, we conduct empirical studies on these DNN structures and try to understand their respective pros and cons. To ensure a fair comparison, we first develop a unified framework called SPACH which adopts separate modules for spatial and channel processing. Our experiments under the SPACH framework reveal that all structures can achieve competitive performance at a moderate scale. However, they demonstrate distinctive behaviors when the network size scales up. Based on our findings, we propose two hybrid models using convolution and Transformer modules. The resulting Hybrid-MS-S+ model achieves 83.9% top-1 accuracy with 63M parameters and 12.3G FLOPS. It is already on par with the SOTA models with sophisticated designs. The code and models will be made publicly available.

Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.

北京阿比特科技有限公司