Click-through rate (CTR) prediction is crucial in recommendation and online advertising systems. Existing methods usually model user behaviors, while ignoring the informative context which influences the user to make a click decision, e.g., click pages and pre-ranking candidates that inform inferences about user interests, leading to suboptimal performance. In this paper, we propose a Decision-Making Context Interaction Network (DCIN), which deploys a carefully designed Context Interaction Unit (CIU) to learn decision-making contexts and thus benefits CTR prediction. In addition, the relationship between different decision-making context sources is explored by the proposed Adaptive Interest Aggregation Unit (AIAU) to improve CTR prediction further. In the experiments on public and industrial datasets, DCIN significantly outperforms the state-of-the-art methods. Notably, the model has obtained the improvement of CTR+2.9%/CPM+2.1%/GMV+1.5% for online A/B testing and served the main traffic of Meituan Waimai advertising system.
The performance of convolutional neural networks has continued to improve over the last decade. At the same time, as model complexity grows, it becomes increasingly more difficult to explain model decisions. Such explanations may be of critical importance for reliable operation of human-machine pairing setups, or for model selection when the "best" model among many equally-accurate models must be established. Saliency maps represent one popular way of explaining model decisions by highlighting image regions models deem important when making a prediction. However, examining salience maps at scale is not practical. In this paper, we propose five novel methods of leveraging model salience to explain a model behavior at scale. These methods ask: (a) what is the average entropy for a model's salience maps, (b) how does model salience change when fed out-of-set samples, (c) how closely does model salience follow geometrical transformations, (d) what is the stability of model salience across independent training runs, and (e) how does model salience react to salience-guided image degradations. To assess the proposed measures on a concrete and topical problem, we conducted a series of experiments for the task of synthetic face detection with two types of models: those trained traditionally with cross-entropy loss, and those guided by human salience when training to increase model generalizability. These two types of models are characterized by different, interpretable properties of their salience maps, which allows for the evaluation of the correctness of the proposed measures. We offer source codes for each measure along with this paper.
Current sequential recommender systems are proposed to tackle the dynamic user preference learning with various neural techniques, such as Transformer and Graph Neural Networks (GNNs). However, inference from the highly sparse user behavior data may hinder the representation ability of sequential pattern encoding. To address the label shortage issue, contrastive learning (CL) methods are proposed recently to perform data augmentation in two fashions: (i) randomly corrupting the sequence data (e.g. stochastic masking, reordering); (ii) aligning representations across pre-defined contrastive views. Although effective, we argue that current CL-based methods have limitations in addressing popularity bias and disentangling of user conformity and real interest. In this paper, we propose a new Debiased Contrastive learning paradigm for Recommendation (DCRec) that unifies sequential pattern encoding with global collaborative relation modeling through adaptive conformity-aware augmentation. This solution is designed to tackle the popularity bias issue in recommendation systems. Our debiased contrastive learning framework effectively captures both the patterns of item transitions within sequences and the dependencies between users across sequences. Our experiments on various real-world datasets have demonstrated that DCRec significantly outperforms state-of-the-art baselines, indicating its efficacy for recommendation. To facilitate reproducibility of our results, we make our implementation of DCRec publicly available at: //github.com/HKUDS/DCRec.
Conformal prediction is a distribution-free technique for establishing valid prediction intervals. Although conventionally people conduct conformal prediction in the output space, this is not the only possibility. In this paper, we propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces by leveraging the inductive bias of deep representation learning. From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions. Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods. Apart from experiments on existing predictive inference benchmarks, we also demonstrate the state-of-the-art performance of the proposed methods on large-scale tasks such as ImageNet classification and Cityscapes image segmentation.
Learning to predict agent motions with relationship reasoning is important for many applications. In motion prediction tasks, maintaining motion equivariance under Euclidean geometric transformations and invariance of agent interaction is a critical and fundamental principle. However, such equivariance and invariance properties are overlooked by most existing methods. To fill this gap, we propose EqMotion, an efficient equivariant motion prediction model with invariant interaction reasoning. To achieve motion equivariance, we propose an equivariant geometric feature learning module to learn a Euclidean transformable feature through dedicated designs of equivariant operations. To reason agent's interactions, we propose an invariant interaction reasoning module to achieve a more stable interaction modeling. To further promote more comprehensive motion features, we propose an invariant pattern feature learning module to learn an invariant pattern feature, which cooperates with the equivariant geometric feature to enhance network expressiveness. We conduct experiments for the proposed model on four distinct scenarios: particle dynamics, molecule dynamics, human skeleton motion prediction and pedestrian trajectory prediction. Experimental results show that our method is not only generally applicable, but also achieves state-of-the-art prediction performances on all the four tasks, improving by 24.0/30.1/8.6/9.2%. Code is available at //github.com/MediaBrain-SJTU/EqMotion.
Information that is of relevance for decision-making is often distributed, and held by self-interested agents. Decision markets are well-suited mechanisms to elicit such information and aggregate it into conditional forecasts that can be used for decision-making. However, for incentive-compatible elicitation, decision markets rely on stochastic decision rules which entails that sometimes actions have to be taken that have been predicted to be sub-optimal. In this work, we propose three closely related mechanisms that elicit and aggregate information similar to a decision market, but are incentive compatible despite using a deterministic decision rule. Following ideas from peer prediction mechanisms, proxies rather than observed future outcomes are used to score predictions. The first mechanism requires the principal to have her own signal, which is then used as a proxy to elicit information from a group of self-interested agents. The principal then deterministically maps the aggregated forecasts and the proxy to the best possible decision. The second and third mechanisms expand the first to cover a scenario where the principal does not have access to her own signal. The principal offers a partial profit to align the interest of one agent and retrieve its signal as a proxy; or alternatively uses a proper peer prediction mechanism to elicit signals from two agents. Aggregation and decision-making then follow the first mechanism. We evaluate our first mechanism using a multi-agent bandit learning system. The result suggests that the mechanism can train agents to achieve a performance similar to a Bayesian inference model with access to all information held by the agents.
Link prediction aims to identify potential missing triples in knowledge graphs. To get better results, some recent studies have introduced multimodal information to link prediction. However, these methods utilize multimodal information separately and neglect the complicated interaction between different modalities. In this paper, we aim at better modeling the inter-modality information and thus introduce a novel Interactive Multimodal Fusion (IMF) model to integrate knowledge from different modalities. To this end, we propose a two-stage multimodal fusion framework to preserve modality-specific knowledge as well as take advantage of the complementarity between different modalities. Instead of directly projecting different modalities into a unified space, our multimodal fusion module limits the representations of different modalities independent while leverages bilinear pooling for fusion and incorporates contrastive learning as additional constraints. Furthermore, the decision fusion module delivers the learned weighted average over the predictions of all modalities to better incorporate the complementarity of different modalities. Our approach has been demonstrated to be effective through empirical evaluations on several real-world datasets. The implementation code is available online at //github.com/HestiaSky/IMF-Pytorch.
Event extraction (EE) plays an important role in many industrial application scenarios, and high-quality EE methods require a large amount of manual annotation data to train supervised learning models. However, the cost of obtaining annotation data is very high, especially for annotation of domain events, which requires the participation of experts from corresponding domain. So we introduce active learning (AL) technology to reduce the cost of event annotation. But the existing AL methods have two main problems, which make them not well used for event extraction. Firstly, the existing pool-based selection strategies have limitations in terms of computational cost and sample validity. Secondly, the existing evaluation of sample importance lacks the use of local sample information. In this paper, we present a novel deep AL method for EE. We propose a batch-based selection strategy and a Memory-Based Loss Prediction model (MBLP) to select unlabeled samples efficiently. During the selection process, we use an internal-external sample loss ranking method to evaluate the sample importance by using local information. Finally, we propose a delayed training strategy to train the MBLP model. Extensive experiments are performed on three domain datasets, and our method outperforms other state-of-the-art methods.
The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.
Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.
Multi-view networks are ubiquitous in real-world applications. In order to extract knowledge or business value, it is of interest to transform such networks into representations that are easily machine-actionable. Meanwhile, network embedding has emerged as an effective approach to generate distributed network representations. Therefore, we are motivated to study the problem of multi-view network embedding, with a focus on the characteristics that are specific and important in embedding this type of networks. In our practice of embedding real-world multi-view networks, we identify two such characteristics, which we refer to as preservation and collaboration. We then explore the feasibility of achieving better embedding quality by simultaneously modeling preservation and collaboration, and propose the mvn2vec algorithms. With experiments on a series of synthetic datasets, an internal Snapchat dataset, and two public datasets, we further confirm the presence and importance of preservation and collaboration. These experiments also demonstrate that better embedding can be obtained by simultaneously modeling the two characteristics, while not over-complicating the model or requiring additional supervision.