亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The advent of online genomic data-sharing services has sought to enhance the accessibility of large genomic datasets by allowing queries about genetic variants, such as summary statistics, aiding care providers in distinguishing between spurious genomic variations and those with clinical significance. However, numerous studies have demonstrated that even sharing summary genomic information exposes individual members of such datasets to a significant privacy risk due to membership inference attacks. While several approaches have emerged that reduce privacy risks by adding noise or reducing the amount of information shared, these typically assume non-adaptive attacks that use likelihood ratio test (LRT) statistics. We propose a Bayesian game-theoretic framework for optimal privacy-utility tradeoff in the sharing of genomic summary statistics. Our first contribution is to prove that a very general Bayesian attacker model that anchors our game-theoretic approach is more powerful than the conventional LRT-based threat models in that it induces worse privacy loss for the defender who is modeled as a von Neumann-Morgenstern (vNM) decision-maker. We show this to be true even when the attacker uses a non-informative subjective prior. Next, we present an analytically tractable approach to compare the Bayesian attacks with arbitrary subjective priors and the Neyman-Pearson optimal LRT attacks under the Gaussian mechanism common in differential privacy frameworks. Finally, we propose an approach for approximating Bayes-Nash equilibria of the game using deep neural network generators to implicitly represent player mixed strategies. Our experiments demonstrate that the proposed game-theoretic framework yields both stronger attacks and stronger defense strategies than the state of the art.

相關內容

Context: An increasing number of software systems are written in multiple programming languages (PLs), which are called multi-programming-language (MPL) systems. MPL bugs (MPLBs) refers to the bugs whose resolution involves multiple PLs. Despite high complexity of MPLB resolution, there lacks MPLB prediction methods. Objective: This work aims to construct just-in-time (JIT) MPLB prediction models with selected prediction metrics, analyze the significance of the metrics, and then evaluate the performance of cross-project JIT MPLB prediction. Method: We develop JIT MPLB prediction models with the selected metrics using machine learning algorithms and evaluate the models in within-project and cross-project contexts with our constructed dataset based on 18 Apache MPL projects. Results: Random Forest is appropriate for JIT MPLB prediction. Changed LOC of all files, added LOC of all files, and the total number of lines of all files of the project currently are the most crucial metrics in JIT MPLB prediction. The prediction models can be simplified using a few top-ranked metrics. Training on the dataset from multiple projects can yield significantly higher AUC than training on the dataset from a single project for cross-project JIT MPLB prediction. Conclusions: JIT MPLB prediction models can be constructed with the selected set of metrics, which can be reduced to build simplified JIT MPLB prediction models, and cross-project JIT MPLB prediction is feasible.

Off-dynamics Reinforcement Learning (ODRL) seeks to transfer a policy from a source environment to a target environment characterized by distinct yet similar dynamics. In this context, traditional RL agents depend excessively on the dynamics of the source environment, resulting in the discovery of policies that excel in this environment but fail to provide reasonable performance in the target one. In the few-shot framework, a limited number of transitions from the target environment are introduced to facilitate a more effective transfer. Addressing this challenge, we propose an innovative approach inspired by recent advancements in Imitation Learning and conservative RL algorithms. The proposed method introduces a penalty to regulate the trajectories generated by the source-trained policy. We evaluate our method across various environments representing diverse off-dynamics conditions, where access to the target environment is extremely limited. These experiments include high-dimensional systems relevant to real-world applications. Across most tested scenarios, our proposed method demonstrates performance improvements compared to existing baselines.

The emergence of Large Language Models (LLMs) has revolutionized how users access information, shifting from traditional search engines to direct question-and-answer interactions with LLMs. However, the widespread adoption of LLMs has revealed a significant challenge known as hallucination, wherein LLMs generate coherent yet factually inaccurate responses. This hallucination phenomenon has led to users' distrust in information retrieval systems based on LLMs. To tackle this challenge, this paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in LLMs. DRAD improves upon traditional retrieval augmentation by dynamically adapting the retrieval process based on real-time hallucination detection. It features two main components: Real-time Hallucination Detection (RHD) for identifying potential hallucinations without external models, and Self-correction based on External Knowledge (SEK) for correcting these errors using external knowledge. Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs. All of our code and data are open-sourced at //github.com/oneal2000/EntityHallucination.

To address the increased latency, network load and compromised privacy issues associated with the Cloud-centric IoT applications, fog computing has emerged. Fog computing utilizes the proximal computational and storage devices, for sensor data analytics. The edge-fog-cloud continuum thus provides significant edge analytics capabilities for realizing interesting IoT applications. While edge analytics tasks are usually performed on a single node, distributed edge analytics proposes utilizing multiple nodes from the continuum, concurrently. This paper discusses and demonstrates distributed edge analytics from three different perspectives; serverless data pipelines (SDP), distributed computing and edge analytics, and federated learning, with our frameworks, MQTT based SDP, CANTO and FIDEL, respectively. The results produced in the paper, through different case studies, show the feasibility of performing distributed edge analytics following the three approaches, across the continuum.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.

北京阿比特科技有限公司