亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Markov Chain Monte Carlo methods for sampling from complex distributions and estimating normalization constants often simulate samples from a sequence of intermediate distributions along an annealing path, which bridges between a tractable initial distribution and a target density of interest. Prior work has constructed annealing paths using quasi-arithmetic means, and interpreted the resulting intermediate densities as minimizing an expected divergence to the endpoints. We provide a comprehensive analysis of this 'centroid' property using Bregman divergences under a monotonic embedding of the density function, thereby associating common divergences such as Amari's and Renyi's ${\alpha}$-divergences, ${(\alpha,\beta)}$-divergences, and the Jensen-Shannon divergence with intermediate densities along an annealing path. Our analysis highlights the interplay between parametric families, quasi-arithmetic means, and divergence functions using the rho-tau Bregman divergence framework of Zhang 2004,2013.

相關內容

We investigate the role of various demonstration components in the in-context learning (ICL) performance of large language models (LLMs). Specifically, we explore the impacts of ground-truth labels, input distribution, and complementary explanations, particularly when these are altered or perturbed. We build on previous work, which offers mixed findings on how these elements influence ICL. To probe these questions, we employ explainable NLP (XNLP) methods and utilize saliency maps of contrastive demonstrations for both qualitative and quantitative analysis. Our findings reveal that flipping ground-truth labels significantly affects the saliency, though it's more noticeable in larger LLMs. Our analysis of the input distribution at a granular level reveals that changing sentiment-indicative terms in a sentiment analysis task to neutral ones does not have as substantial an impact as altering ground-truth labels. Finally, we find that the effectiveness of complementary explanations in boosting ICL performance is task-dependent, with limited benefits seen in sentiment analysis tasks compared to symbolic reasoning tasks. These insights are critical for understanding the functionality of LLMs and guiding the development of effective demonstrations, which is increasingly relevant in light of the growing use of LLMs in applications such as ChatGPT. Our research code is publicly available at //github.com/paihengxu/XICL.

Out-of-distribution (OOD) detection methods often exploit auxiliary outliers to train model identifying OOD samples, especially discovering challenging outliers from auxiliary outliers dataset to improve OOD detection. However, they may still face limitations in effectively distinguishing between the most challenging OOD samples that are much like in-distribution (ID) data, i.e., ID-like samples. To this end, we propose a novel OOD detection framework that discovers ID-like outliers using CLIP from the vicinity space of the ID samples, thus helping to identify these most challenging OOD samples. Then a prompt learning framework is proposed that utilizes the identified ID-like outliers to further leverage the capabilities of CLIP for OOD detection. Benefiting from the powerful CLIP, we only need a small number of ID samples to learn the prompts of the model without exposing other auxiliary outlier datasets. By focusing on the most challenging ID-like OOD samples and elegantly exploiting the capabilities of CLIP, our method achieves superior few-shot learning performance on various real-world image datasets (e.g., in 4-shot OOD detection on the ImageNet-1k dataset, our method reduces the average FPR95 by 12.16% and improves the average AUROC by 2.76%, compared to state-of-the-art methods).

We formulate the predicted-updates dynamic model, one of the first beyond-worst-case models for dynamic algorithms, which generalizes a large set of well-studied dynamic models including the offline dynamic, incremental, and decremental models to the fully dynamic setting when given predictions about the update times of the elements. In the most basic form of our model, we receive a set of predicted update times for all of the updates that occur over the event horizon. We give a novel framework that "lifts" offline divide-and-conquer algorithms into the fully dynamic setting with little overhead. Using this, we are able to interpolate between the offline and fully dynamic settings; when the $\ell_1$ error of the prediction is linear in the number of updates, we achieve the offline runtime of the algorithm (up to $\mathrm{poly} \log n$ factors). Provided a fully dynamic backstop algorithm, our algorithm will never do worse than the backstop algorithm regardless of the prediction error. Furthermore, our framework achieves a smooth linear trade-off between $\ell_1$ error in the predictions and runtime. These correspond to the desiderata of consistency, robustness, and graceful degradation of the algorithms-with-predictions literature. We further extend our techniques to incremental and decremental settings, transforming algorithms in these settings when given predictions of only the deletion and insertion times, respectively. Our framework is general, and we apply it to obtain improved efficiency bounds over the state-of-the-art dynamic algorithms for a variety of problems including triconnectivity, planar digraph all pairs shortest paths, $k$-edge connectivity, and others, for prediction error of reasonable magnitude.

Deep reinforcement learning excels in various domains but lacks generalizability and interoperability. Programmatic RL methods (Trivedi et al., 2021; Liu et al., 2023) reformulate solving RL tasks as synthesizing interpretable programs that can be executed in the environments. Despite encouraging results, these methods are limited to short-horizon tasks. On the other hand, representing RL policies using state machines (Inala et al., 2020) can inductively generalize to long-horizon tasks; however, it struggles to scale up to acquire diverse and complex behaviors. This work proposes Program Machine Policies (POMPs), which bridge the advantages of programmatic RL and state machine policies, allowing for the representation of complex behaviors and the address of long-term tasks. Specifically, we introduce a method that can retrieve a set of effective, diverse, compatible programs. Then, we use these programs as modes of a state machine and learn a transition function to transition among mode programs, allowing for capturing long-horizon repetitive behaviors. Our proposed framework outperforms programmatic RL and deep RL baselines on various tasks and demonstrates the ability to generalize to even longer horizons without any fine-tuning inductively. Ablation studies justify the effectiveness of our proposed search algorithm for retrieving a set of programs as modes.

The performance of Hamiltonian Monte Carlo simulations crucially depends on both the integration timestep and the number of integration steps. We present an adaptive general-purpose framework to automatically tune such parameters, based on a local loss function which promotes the fast exploration of phase-space. We show that a good correspondence between loss and autocorrelation time can be established, allowing for gradient-based optimization using a fully-differentiable set-up. The loss is constructed in such a way that it also allows for gradient-driven learning of a distribution over the number of integration steps. Our approach is demonstrated for the one-dimensional harmonic oscillator and alanine dipeptide, a small protein common as a test case for simulation methods. Through the application to the harmonic oscillator, we highlight the importance of not using a fixed timestep to avoid a rugged loss surface with many local minima, otherwise trapping the optimization. In the case of alanine dipeptide, by tuning the only free parameter of our loss definition, we find a good correspondence between it and the autocorrelation times, resulting in a $>100$ fold speed up in optimization of simulation parameters compared to a grid-search. For this system, we also extend the integrator to allow for atom-dependent timesteps, providing a further reduction of $25\%$ in autocorrelation times.

Support Vector Machine (SVM) algorithm requires a high computational cost (both in memory and time) to solve a complex quadratic programming (QP) optimization problem during the training process. Consequently, SVM necessitates high computing hardware capabilities. The central processing unit (CPU) clock frequency cannot be increased due to physical limitations in the miniaturization process. However, the potential of parallel multi-architecture, available in both multi-core CPUs and highly scalable GPUs, emerges as a promising solution to enhance algorithm performance. Therefore, there is an opportunity to reduce the high computational time required by SVM for solving the QP optimization problem. This paper presents a comparative study that implements the SVM algorithm on different parallel architecture frameworks. The experimental results show that SVM MPI-CUDA implementation achieves a speedup over SVM TensorFlow implementation on different datasets. Moreover, SVM TensorFlow implementation provides a cross-platform solution that can be migrated to alternative hardware components, which will reduces the development time.

We propose an approach to directly estimate the moments or marginals for a high-dimensional equilibrium distribution in statistical mechanics, via solving the high-dimensional Fokker-Planck equation in terms of low-order cluster moments or marginals. With this approach, we bypass the exponential complexity of estimating the full high-dimensional distribution and directly solve the simplified partial differential equations for low-order moments/marginals. Moreover, the proposed moment/marginal relaxation is fully convex and can be solved via off-the-shelf solvers. We further propose a time-dependent version of the convex programs to study non-equilibrium dynamics. We show the proposed method can recover the meanfield approximation of an equilibrium density. Numerical results are provided to demonstrate the performance of the proposed algorithm for high-dimensional systems.

Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This representation method can also maintain the flexibility of language. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR employs the diffusion model and the pre-trained language model (e.g., T5 and CLIP). We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into image SR, yields excellent results on both synthetic and real-world images. Code: //github.com/zhengchen1999/PromptSR.

Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司