亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Perception algorithms that provide estimates of their uncertainty are crucial to the development of autonomous robots that can operate in challenging and uncontrolled environments. Such perception algorithms provide the means for having risk-aware robots that reason about the probability of successfully completing a task when planning. There exist perception algorithms that come with models of their uncertainty; however, these models are often developed with assumptions, such as perfect data associations, that do not hold in the real world. Hence the resultant estimated uncertainty is a weak lower bound. To tackle this problem we present introspective perception - a novel approach for predicting accurate estimates of the uncertainty of perception algorithms deployed on mobile robots. By exploiting sensing redundancy and consistency constraints naturally present in the data collected by a mobile robot, introspective perception learns an empirical model of the error distribution of perception algorithms in the deployment environment and in an autonomously supervised manner. In this paper, we present the general theory of introspective perception and demonstrate successful implementations for two different perception tasks. We provide empirical results on challenging real-robot data for introspective stereo depth estimation and introspective visual simultaneous localization and mapping and show that they learn to predict their uncertainty with high accuracy and leverage this information to significantly reduce state estimation errors for an autonomous mobile robot.

相關內容

Formal methods were frequently shown to be effective and, perhaps because of that, practitioners are interested in using them more often. Still, these methods are far less applied than expected, particularly, in critical domains where they are strongly recommended and where they have the greatest potential. Our hypothesis is that formal methods still seem not to be applicable enough or ready for their intended use. In critical software engineering, what do we mean when we speak of a formal method? And what does it mean for such a method to be applicable both from a scientific and practical viewpoint? Based on what the literature tells about the first question, with this manifesto, we lay out a set of principles that when followed by a formal method give rise to its mature applicability in a given scope. Rather than exercising criticism of past developments, this manifesto strives to foster an increased use of formal methods to the maximum benefit.

It is not an exaggeration to say that the recent progress in artificial intelligence technology depends on large-scale and high-quality data. Simultaneously, a prevalent issue exists everywhere: the budget for data labeling is constrained. Active learning is a prominent approach for addressing this issue, where valuable data for labeling is selected through a model and utilized to iteratively adjust the model. However, due to the limited amount of data in each iteration, the model is vulnerable to bias; thus, it is more likely to yield overconfident predictions. In this paper, we present two novel methods to address the problem of overconfidence that arises in the active learning scenario. The first is an augmentation strategy named Cross-Mix-and-Mix (CMaM), which aims to calibrate the model by expanding the limited training distribution. The second is a selection strategy named Ranked Margin Sampling (RankedMS), which prevents choosing data that leads to overly confident predictions. Through various experiments and analyses, we are able to demonstrate that our proposals facilitate efficient data selection by alleviating overconfidence, even though they are readily applicable.

A plethora of outlier detectors have been explored in the time series domain, however, in a business sense, not all outliers are anomalies of interest. Existing anomaly detection solutions are confined to certain outlier detectors limiting their applicability to broader anomaly detection use cases. Network KPIs (Key Performance Indicators) tend to exhibit stochastic behaviour producing statistical outliers, most of which do not adversely affect business operations. Thus, a heuristic is required to capture the business definition of an anomaly for time series KPI. This article proposes an Adaptive Thresholding Heuristic (ATH) to dynamically adjust the detection threshold based on the local properties of the data distribution and adapt to changes in time series patterns. The heuristic derives the threshold based on the expected periodicity and the observed proportion of anomalies minimizing false positives and addressing concept drift. ATH can be used in conjunction with any underlying seasonality decomposition method and an outlier detector that yields an outlier score. This method has been tested on EON1-Cell-U, a labeled KPI anomaly dataset produced by Ericsson, to validate our hypothesis. Experimental results show that ATH is computationally efficient making it scalable for near real time anomaly detection and flexible with multiple forecasters and outlier detectors.

This paper addresses the optimization problem to maximize the total costs that can be shared among a group of agents, while maintaining stability in the sense of the core constraints of a cooperative transferable utility game, or TU game. When maximizing total shareable costs, the cost shares must satisfy all constraints that define the core of a TU game, except for being budget balanced. The paper first gives a fairly complete picture of the computational complexity of this optimization problem, its relation to optimiztion over the core itself, and its equivalence to other, minimal core relaxations that have been proposed earlier. We then address minimum cost spanning tree (MST) games as an example for a class of cost sharing games with non-empty core. While submodular cost functions yield efficient algorithms to maximize shareable costs, MST games have cost functions that are subadditive, but generally not submodular. Nevertheless, it is well known that cost shares in the core of MST games can be found efficiently. In contrast, we show that the maximization of shareable costs is NP-hard for MST games and derive a 2-approximation algorithm. Our work opens several directions for future research.

Understanding how helpful a visualization is from experimental results is difficult because the observed performance is confounded with aspects of the study design, such as how useful the information that is visualized is for the task. We develop a rational agent framework for designing and interpreting visualization experiments. Our framework conceives two experiments with the same setup: one with behavioral agents (human subjects), and the other one with a hypothetical rational agent. A visualization is evaluated by comparing the expected performance of behavioral agents to that of a rational agent under different assumptions. Using recent visualization decision studies from the literature, we demonstrate how the framework can be used to pre-experimentally evaluate the experiment design by bounding the expected improvement in performance from having access to visualizations, and post-experimentally to deconfound errors of information extraction from errors of optimization, among other analyses.

Besides interacting correctly with other vehicles, automated vehicles should also be able to react in a safe manner to vulnerable road users like pedestrians or cyclists. For a safe interaction between pedestrians and automated vehicles, the vehicle must be able to interpret the pedestrian's behavior. Common environment models do not contain information like body poses used to understand the pedestrian's intent. In this work, we propose an environment model that includes the position of the pedestrians as well as their pose information. We only use images from a monocular camera and the vehicle's localization data as input to our pedestrian environment model. We extract the skeletal information with a neural network human pose estimator from the image. Furthermore, we track the skeletons with a simple tracking algorithm based on the Hungarian algorithm and an ego-motion compensation. To obtain the 3D information of the position, we aggregate the data from consecutive frames in conjunction with the vehicle position. We demonstrate our pedestrian environment model on data generated with the CARLA simulator and the nuScenes dataset. Overall, we reach a relative position error of around 16% on both datasets.

Traditional problems in computational geometry involve aspects that are both discrete and continuous. One such example is nearest-neighbor searching, where the input is discrete, but the result depends on distances, which vary continuously. In many real-world applications of geometric data structures, it is assumed that query results are continuous, free of jump discontinuities. This is at odds with many modern data structures in computational geometry, which employ approximations to achieve efficiency, but these approximations often suffer from discontinuities. In this paper, we present a general method for transforming an approximate but discontinuous data structure into one that produces a smooth approximation, while matching the asymptotic space efficiencies of the original. We achieve this by adapting an approach called the partition-of-unity method, which smoothly blends multiple local approximations into a single smooth global approximation. We illustrate the use of this technique in a specific application of approximating the distance to the boundary of a convex polytope in $\mathbb{R}^d$ from any point in its interior. We begin by developing a novel data structure that efficiently computes an absolute $\varepsilon$-approximation to this query in time $O(\log (1/\varepsilon))$ using $O(1/\varepsilon^{d/2})$ storage space. Then, we proceed to apply the proposed partition-of-unity blending to guarantee the smoothness of the approximate distance field, establishing optimal asymptotic bounds on the norms of its gradient and Hessian.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

北京阿比特科技有限公司