Vision language decision making (VLDM) is a challenging multimodal task. The agent have to understand complex human instructions and complete compositional tasks involving environment navigation and object manipulation. However, the long action sequences involved in VLDM make the task difficult to learn. From an environment perspective, we find that task episodes can be divided into fine-grained \textit{units}, each containing a navigation phase and an interaction phase. Since the environment within a unit stays unchanged, we propose a novel hybrid-training framework that enables active exploration in the environment and reduces the exposure bias. Such framework leverages the unit-grained configurations and is model-agnostic. Specifically, we design a Unit-Transformer (UT) with an intrinsic recurrent state that maintains a unit-scale cross-modal memory. Through extensive experiments on the TEACH benchmark, we demonstrate that our proposed framework outperforms existing state-of-the-art methods in terms of all evaluation metrics. Overall, our work introduces a novel approach to tackling the VLDM task by breaking it down into smaller, manageable units and utilizing a hybrid-training framework. By doing so, we provide a more flexible and effective solution for multimodal decision making.
Large language models (LLMs) have achieved significant success in interacting with human. However, recent studies have revealed that these models often suffer from hallucinations, leading to overly confident but incorrect judgments. This limits their application in the medical domain, where tasks require the utmost accuracy. This paper introduces an automated evaluation framework that assesses the practical capabilities of LLMs as virtual doctors during multi-turn consultations. Consultation tasks are designed to require LLMs to be aware of what they do not know, to inquire about missing medical information from patients, and to ultimately make diagnoses. To evaluate the performance of LLMs for these tasks, a benchmark is proposed by reformulating medical multiple-choice questions from the United States Medical Licensing Examinations (USMLE), and comprehensive evaluation metrics are developed and evaluated on three constructed test sets. A medical consultation training set is further constructed to improve the consultation ability of LLMs. The results of the experiments show that fine-tuning with the training set can alleviate hallucinations and improve LLMs' performance on the proposed benchmark. Extensive experiments and ablation studies are conducted to validate the effectiveness and robustness of the proposed framework.
Many of the most commonly explored natural language processing (NLP) information extraction tasks can be thought of as evaluations of declarative knowledge, or fact-based information extraction. Procedural knowledge extraction, i.e., breaking down a described process into a series of steps, has received much less attention, perhaps in part due to the lack of structured datasets that capture the knowledge extraction process from end-to-end. To address this unmet need, we present FlaMB\'e (Flow annotations for Multiverse Biological entities), a collection of expert-curated datasets across a series of complementary tasks that capture procedural knowledge in biomedical texts. This dataset is inspired by the observation that one ubiquitous source of procedural knowledge that is described as unstructured text is within academic papers describing their methodology. The workflows annotated in FlaMB\'e are from texts in the burgeoning field of single cell research, a research area that has become notorious for the number of software tools and complexity of workflows used. Additionally, FlaMB\'e provides, to our knowledge, the largest manually curated named entity recognition (NER) and disambiguation (NED) datasets for tissue/cell type, a fundamental biological entity that is critical for knowledge extraction in the biomedical research domain. Beyond providing a valuable dataset to enable further development of NLP models for procedural knowledge extraction, automating the process of workflow mining also has important implications for advancing reproducibility in biomedical research.
The advanced language processing abilities of large language models (LLMs) have stimulated debate over their capacity to replicate human-like cognitive processes. One differentiating factor between language processing in LLMs and humans is that language input is often grounded in several perceptual modalities, whereas most LLMs process solely text-based information. Multimodal grounding allows humans to integrate - e.g. visual context with linguistic information and thereby place constraints on the space of upcoming words, reducing cognitive load and improving comprehension. Recent multimodal LLMs (mLLMs) combine a visual-linguistic embedding space with a transformer type attention mechanism for next-word prediction. Here we ask whether predictive language processing based on multimodal input in mLLMs aligns with humans. Two-hundred participants watched short audio-visual clips and estimated predictability of an upcoming verb or noun. The same clips were processed by the mLLM CLIP, with predictability scores based on comparing image and text feature vectors. Eye-tracking was used to estimate what visual features participants attended to, and CLIP's visual attention weights were recorded. We find that alignment of predictability scores was driven by multimodality of CLIP (no alignment for a unimodal state-of-the-art LLM) and by the attention mechanism (no alignment when attention weights were perturbated or when the same input was fed to a multimodal model without attention). We further find a significant spatial overlap between CLIP's visual attention weights and human eye-tracking data. Results suggest that comparable processes of integrating multimodal information, guided by attention to relevant visual features, supports predictive language processing in mLLMs and humans.
Large language models (LLMs) have recently demonstrated remarkable capabilities to comprehend human intentions, engage in reasoning, and design planning-like behavior. To further unleash the power of LLMs to accomplish complex tasks, there is a growing trend to build agent framework that equips LLMs, such as ChatGPT, with tool-use abilities to connect with massive external APIs. In this work, we introduce ModelScope-Agent, a general and customizable agent framework for real-world applications, based on open-source LLMs as controllers. It provides a user-friendly system library, with customizable engine design to support model training on multiple open-source LLMs, while also enabling seamless integration with both model APIs and common APIs in a unified way. To equip the LLMs with tool-use abilities, a comprehensive framework has been proposed spanning over tool-use data collection, tool retrieval, tool registration, memory control, customized model training, and evaluation for practical real-world applications. Finally, we showcase ModelScopeGPT, a real-world intelligent assistant of ModelScope Community based on the ModelScope-Agent framework, which is able to connect open-source LLMs with more than 1000 public AI models and localized community knowledge in ModelScope. The ModelScope-Agent library\footnote{//github.com/modelscope/modelscope-agent} and online demo\footnote{//modelscope.cn/studios/damo/ModelScopeGPT/summary} are now publicly available.
Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.