This study tackles on a new problem of estimating human-error potential on a shop floor on the basis of wearable sensors. Unlike existing studies that utilize biometric sensing technology to estimate people's internal state such as fatigue and mental stress, we attempt to estimate the human-error potential in a situation where a target person does not stay calm, which is much more difficult as sensor noise significantly increases. We propose a novel formulation, in which the human-error-potential estimation problem is reduced to a classification problem, and introduce a new method that can be used for solving the classification problem even with noisy sensing data. The key ideas are to model the process of calculating biometric indices probabilistically so that the prior knowledge on the biometric indices can be integrated, and to utilize the features that represent the movement of target persons in combination with biometric features. The experimental analysis showed that our method effectively estimates the human-error potential.
Despite recent advances in appearance-based gaze estimation techniques, the need for training data that covers the target head pose and gaze distribution remains a crucial challenge for practical deployment. This work examines a novel approach for synthesizing gaze estimation training data based on monocular 3D face reconstruction. Unlike prior works using multi-view reconstruction, photo-realistic CG models, or generative neural networks, our approach can manipulate and extend the head pose range of existing training data without any additional requirements. We introduce a projective matching procedure to align the reconstructed 3D facial mesh to the camera coordinate system and synthesize face images with accurate gaze labels. We also propose a mask-guided gaze estimation model and data augmentation strategies to further improve the estimation accuracy by taking advantage of the synthetic training data. Experiments using multiple public datasets show that our approach can significantly improve the estimation performance on challenging cross-dataset settings with non-overlapping gaze distributions.
The recently proposed statistical finite element (statFEM) approach synthesises measurement data with finite element models and allows for making predictions about the true system response. We provide a probabilistic error analysis for a prototypical statFEM setup based on a Gaussian process prior under the assumption that the noisy measurement data are generated by a deterministic true system response function that satisfies a second-order elliptic partial differential equation for an unknown true source term. In certain cases, properties such as the smoothness of the source term may be misspecified by the Gaussian process model. The error estimates we derive are for the expectation with respect to the measurement noise of the $L^2$-norm of the difference between the true system response and the mean of the statFEM posterior. The estimates imply polynomial rates of convergence in the numbers of measurement points and finite element basis functions and depend on the Sobolev smoothness of the true source term and the Gaussian process model. A numerical example for Poisson's equation is used to illustrate these theoretical results.
We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interpolation error $1-r/f$ on the spectral interval of $A$. By minimizing this upper bound over all interpolation points, we obtain a new, simple and sharp a priori bound for the relative interpolation error. We then consider three different approaches of representing and computing the rational interpolant $r$. Theoretical and numerical evidence is given that any of these methods for a scalar argument allows to achieve high precision, even in the presence of finite precision arithmetic. We finally investigate the problem of efficiently evaluating $r(A)$, where it turns out that the relative error for a matrix argument is only small if we use a partial fraction decomposition for $r$ following Antoulas and Mayo. An important role is played by a new stopping criterion which ensures to automatically find the degree of $r$ leading to a small error, even in presence of finite precision arithmetic.
Many methods exist to model and track deformable one-dimensional objects (e.g., cables, ropes, and threads) across a stream of video frames. However, these methods depend on the existence of some initial conditions. To the best of our knowledge, the topic of detection methods that can extract those initial conditions in non-trivial situations has hardly been addressed. The lack of detection methods limits the use of the tracking methods in real-world applications and is a bottleneck for fully autonomous applications that work with these objects. This paper proposes an approach for detecting deformable one-dimensional objects which can handle crossings and occlusions. It can be used for tasks such as routing and manipulation and automatically provides the initialization required by the tracking methods. Our algorithm takes an image containing a deformable object and outputs a chain of fixed-length cylindrical segments connected with passive spherical joints. The chain follows the natural behavior of the deformable object and fills the gaps and occlusions in the original image. Our tests and experiments have shown that the method can correctly detect deformable one-dimensional objects in various complex conditions.
The behavior of a generalized random environment integer-valued autoregressive model of higher order with geometric marginal distribution {and negative binomial thinning operator} (abbrev. $RrNGINAR(\mathcal{M,A,P})$) is dictated by a realization $\{z_n\}_{n=1}^\infty$ of an auxiliary Markov chain called random environment process. Element $z_n$ represents a state of the environment in moment $n\in\mathbb{N}$ and determines three different parameters of the model in that moment. In order to use $RrNGINAR(\mathcal{M,A,P})$ model, one first needs to estimate $\{z_n\}_{n=1}^\infty$, which was so far done by K-means data clustering. We argue that this approach ignores some information and performs poorly in certain situations. We propose a new method for estimating $\{z_n\}_{n=1}^\infty$, which includes the data transformation preceding the clustering, in order to reduce the information loss. To confirm its efficiency, we compare this new approach with the usual one when applied on the simulated and the real-life data, and notice all the benefits obtained from our method.
We develop several deep learning algorithms for approximating families of parametric PDE solutions. The proposed algorithms approximate solutions together with their gradients, which in the context of mathematical finance means that the derivative prices and hedging strategies are computed simulatenously. Having approximated the gradient of the solution one can combine it with a Monte-Carlo simulation to remove the bias in the deep network approximation of the PDE solution (derivative price). This is achieved by leveraging the Martingale Representation Theorem and combining the Monte Carlo simulation with the neural network. The resulting algorithm is robust with respect to quality of the neural network approximation and consequently can be used as a black-box in case only limited a priori information about the underlying problem is available. We believe this is important as neural network based algorithms often require fair amount of tuning to produce satisfactory results. The methods are empirically shown to work for high-dimensional problems (e.g. 100 dimensions). We provide diagnostics that shed light on appropriate network architectures.
We study the off-policy evaluation (OPE) problem in an infinite-horizon Markov decision process with continuous states and actions. We recast the $Q$-function estimation into a special form of the nonparametric instrumental variables (NPIV) estimation problem. We first show that under one mild condition the NPIV formulation of $Q$-function estimation is well-posed in the sense of $L^2$-measure of ill-posedness with respect to the data generating distribution, bypassing a strong assumption on the discount factor $\gamma$ imposed in the recent literature for obtaining the $L^2$ convergence rates of various $Q$-function estimators. Thanks to this new well-posed property, we derive the first minimax lower bounds for the convergence rates of nonparametric estimation of $Q$-function and its derivatives in both sup-norm and $L^2$-norm, which are shown to be the same as those for the classical nonparametric regression (Stone, 1982). We then propose a sieve two-stage least squares estimator and establish its rate-optimality in both norms under some mild conditions. Our general results on the well-posedness and the minimax lower bounds are of independent interest to study not only other nonparametric estimators for $Q$-function but also efficient estimation on the value of any target policy in off-policy settings.
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.
Many problems on signal processing reduce to nonparametric function estimation. We propose a new methodology, piecewise convex fitting (PCF), and give a two-stage adaptive estimate. In the first stage, the number and location of the change points is estimated using strong smoothing. In the second stage, a constrained smoothing spline fit is performed with the smoothing level chosen to minimize the MSE. The imposed constraint is that a single change point occurs in a region about each empirical change point of the first-stage estimate. This constraint is equivalent to requiring that the third derivative of the second-stage estimate has a single sign in a small neighborhood about each first-stage change point. We sketch how PCF may be applied to signal recovery, instantaneous frequency estimation, surface reconstruction, image segmentation, spectral estimation and multivariate adaptive regression.
This study considers the 3D human pose estimation problem in a single RGB image by proposing a conditional random field (CRF) model over 2D poses, in which the 3D pose is obtained as a byproduct of the inference process. The unary term of the proposed CRF model is defined based on a powerful heat-map regression network, which has been proposed for 2D human pose estimation. This study also presents a regression network for lifting the 2D pose to 3D pose and proposes the prior term based on the consistency between the estimated 3D pose and the 2D pose. To obtain the approximate solution of the proposed CRF model, the N-best strategy is adopted. The proposed inference algorithm can be viewed as sequential processes of bottom-up generation of 2D and 3D pose proposals from the input 2D image based on deep networks and top-down verification of such proposals by checking their consistencies. To evaluate the proposed method, we use two large-scale datasets: Human3.6M and HumanEva. Experimental results show that the proposed method achieves the state-of-the-art 3D human pose estimation performance.