亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum image computing draws a lot of attention due to storing and processing image data faster than classical. With increasing the image size, the number of connections also increases, leading to the circuit complex. Therefore, efficient quantum image representation and compression issues are still challenging. The encoding of images for representation and compression in quantum systems is different from classical ones. In quantum, encoding of position is more concerned which is the major difference from the classical. In this paper, a novel zero-discarded state connection novel enhance quantum representation (ZSCNEQR) approach is introduced to reduce complexity further by discarding '0' in the location representation information. In the control operational gate, only input '1' contribute to its output thus, discarding zero makes the proposed ZSCNEQR circuit more efficient. The proposed ZSCNEQR approach significantly reduced the required bit for both representation and compression. The proposed method requires 11.76\% less qubits compared to the recent existing method. The results show that the proposed approach is highly effective for representing and compressing images compared to the two relevant existing methods in terms of rate-distortion performance.

相關內容

Solving high-dimensional random parametric PDEs poses a challenging computational problem. It is well-known that numerical methods can greatly benefit from adaptive refinement algorithms, in particular when functional approximations in polynomials are computed as in stochastic Galerkin and stochastic collocations methods. This work investigates a residual based adaptive algorithm used to approximate the solution of the stationary diffusion equation with lognormal coefficients. It is known that the refinement procedure is reliable, but the theoretical convergence of the scheme for this class of unbounded coefficients remains a challenging open question. This paper advances the theoretical results by providing a quasi-error reduction results for the adaptive solution of the lognormal stationary diffusion problem. A computational example supports the theoretical statement.

Time-evolving data sets can often be arranged as a higher-order tensor with one of the modes being the time mode. While tensor factorizations have been successfully used to capture the underlying patterns in such higher-order data sets, the temporal aspect is often ignored, allowing for the reordering of time points. In recent studies, temporal regularizers are incorporated in the time mode to tackle this issue. Nevertheless, existing approaches still do not allow underlying patterns to change in time (e.g., spatial changes in the brain, contextual changes in topics). In this paper, we propose temporal PARAFAC2 (tPARAFAC2): a PARAFAC2-based tensor factorization method with temporal regularization to extract gradually evolving patterns from temporal data. Through extensive experiments on synthetic data, we demonstrate that tPARAFAC2 can capture the underlying evolving patterns accurately performing better than PARAFAC2 and coupled matrix factorization with temporal smoothness regularization.

Hyperspectral imagery contains abundant spectral information beyond the visible RGB bands, providing rich discriminative details about objects in a scene. Leveraging such data has the potential to enhance visual tracking performance. While prior hyperspectral trackers employ CNN or hybrid CNN-Transformer architectures, we propose a novel approach HPFormer on Transformers to capitalize on their powerful representation learning capabilities. The core of HPFormer is a Hyperspectral Hybrid Attention (HHA) module which unifies feature extraction and fusion within one component through token interactions. Additionally, a Transform Band Module (TBM) is introduced to selectively aggregate spatial details and spectral signatures from the full hyperspectral input for injecting informative target representations. Extensive experiments demonstrate state-of-the-art performance of HPFormer on benchmark NIR and VIS tracking datasets. Our work provides new insights into harnessing the strengths of transformers and hyperspectral fusion to advance robust object tracking.

A Hadamard-Hitchcock decomposition of a multidimensional array is a decomposition that expresses the latter as a Hadamard product of several tensor rank decompositions. Such decompositions can encode probability distributions that arise from statistical graphical models associated to complete bipartite graphs with one layer of observed random variables and one layer of hidden ones, usually called restricted Boltzmann machines. We establish generic identifiability of Hadamard-Hitchcock decompositions by exploiting the reshaped Kruskal criterion for tensor rank decompositions. A flexible algorithm leveraging existing decomposition algorithms for tensor rank decomposition is introduced for computing a Hadamard-Hitchcock decomposition. Numerical experiments illustrate its computational performance and numerical accuracy.

Digital image correlation (DIC) has become a valuable tool in the evaluation of mechanical experiments, particularly fatigue crack growth experiments. The evaluation requires accurate information of the crack path and crack tip position, which is difficult to obtain due to inherent noise and artefacts. Machine learning models have been extremely successful in recognizing this relevant information. But for the training of robust models, which generalize well, big data is needed. However, data is typically scarce in the field of material science and engineering because experiments are expensive and time-consuming. We present a method to generate synthetic DIC data using generative adversarial networks with a physics-guided discriminator. To decide whether data samples are real or fake, this discriminator additionally receives the derived von Mises equivalent strain. We show that this physics-guided approach leads to improved results in terms of visual quality of samples, sliced Wasserstein distance, and geometry score.

Characterizing shapes of high-dimensional objects via Ricci curvatures plays a critical role in many research areas in mathematics and physics. However, even though several discretizations of Ricci curvatures for discrete combinatorial objects such as networks have been proposed and studied by mathematicians, the computational complexity aspects of these discretizations have escaped the attention of theoretical computer scientists to a large extent. In this paper, we study one such discretization, namely the Ollivier-Ricci curvature, from the perspective of efficient computation by fine-grained reductions and local query-based algorithms. Our main contributions are the following. (a) We relate our curvature computation problem to minimum weight perfect matching problem on complete bipartite graphs via fine-grained reduction. (b) We formalize the computational aspects of the curvature computation problems in suitable frameworks so that they can be studied by researchers in local algorithms. (c) We provide the first known lower and upper bounds on queries for query-based algorithms for the curvature computation problems in our local algorithms framework. En route, we also illustrate a localized version of our fine-grained reduction. We believe that our results bring forth an intriguing set of research questions, motivated both in theory and practice, regarding designing efficient algorithms for curvatures of objects.

Translation Quality Estimation (TQE) is an important step before deploying the output translation into usage. TQE is also critical in assessing machine translation (MT) and human translation (HT) quality without seeing the reference translations. In this work, we examine if the state-of-the-art large language models (LLMs) can be fine-tuned for the TQE task and their capability. We take ChatGPT as one example and approach TQE as a binary classification task. Using English to Italian, German, French, Japanese, Dutch, Portuguese, Turkish, and Chinese training corpora, our experimental results show that fine-tuned ChatGPT via its API can achieve a relatively high score on predicting translation quality, i.e. if the translation needs to be edited, but there is definitely much space to improve the accuracy. English-Italiano bilingual Abstract is available in the paper.

Autonomous experimentation has emerged as an efficient approach to accelerate the pace of materials discovery. Although instruments for autonomous synthesis have become popular in molecular and polymer science, solution processing of hybrid materials and nanoparticles, examples of autonomous tools for physical vapor deposition are scarce yet important for the semiconductor industry. Here, we report the design and implementation of an autonomous workflow for sputter deposition of thin films with controlled composition, leveraging a highly automated sputtering reactor custom-controlled by Python, optical emission spectroscopy (OES), and a Bayesian optimization algorithm. We modeled film composition, measured by x-ray fluorescence, as a linear function of emission lines monitored during the co-sputtering from elemental Zn and Ti targets in N$_2$ atmosphere. A Bayesian control algorithm, informed by OES, navigates the space of sputtering power to fabricate films with user-defined composition, by minimizing the absolute error between desired and measured emission signals. We validated our approach by autonomously fabricating Zn$_x$Ti$_{1-x}$N$_y$ films with deviations from the targeted cation composition within relative 3.5 %, even for 15 nm thin films, demonstrating that the proposed approach can reliably synthesize thin films with specific composition and minimal human interference. Moreover, the proposed method can be extended to more difficult synthesis experiments where plasma intensity depends non-linearly on pressure, or the elemental sticking coefficients strongly depend on the substrate temperature.

This study performs an ablation analysis of Vector Quantized Generative Adversarial Networks (VQGANs), concentrating on image-to-image synthesis utilizing a single NVIDIA A100 GPU. The current work explores the nuanced effects of varying critical parameters including the number of epochs, image count, and attributes of codebook vectors and latent dimensions, specifically within the constraint of limited resources. Notably, our focus is pinpointed on the vector quantization loss, keeping other hyperparameters and loss components (GAN loss) fixed. This was done to delve into a deeper understanding of the discrete latent space, and to explore how varying its size affects the reconstruction. Though, our results do not surpass the existing benchmarks, however, our findings shed significant light on VQGAN's behaviour for a smaller dataset, particularly concerning artifacts, codebook size optimization, and comparative analysis with Principal Component Analysis (PCA). The study also uncovers the promising direction by introducing 2D positional encodings, revealing a marked reduction in artifacts and insights into balancing clarity and overfitting.

Degradation of image quality due to the presence of haze is a very common phenomenon. Existing DehazeNet [3], MSCNN [11] tackled the drawbacks of hand crafted haze relevant features. However, these methods have the problem of color distortion in gloomy (poor illumination) environment. In this paper, a cardinal (red, green and blue) color fusion network for single image haze removal is proposed. In first stage, network fusses color information present in hazy images and generates multi-channel depth maps. The second stage estimates the scene transmission map from generated dark channels using multi channel multi scale convolutional neural network (McMs-CNN) to recover the original scene. To train the proposed network, we have used two standard datasets namely: ImageNet [5] and D-HAZY [1]. Performance evaluation of the proposed approach has been carried out using structural similarity index (SSIM), mean square error (MSE) and peak signal to noise ratio (PSNR). Performance analysis shows that the proposed approach outperforms the existing state-of-the-art methods for single image dehazing.

北京阿比特科技有限公司