亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in diffusion models attempt to handle conditional generative tasks by utilizing a differentiable loss function for guidance without the need for additional training. While these methods achieved certain success, they often compromise on sample quality and require small guidance step sizes, leading to longer sampling processes. This paper reveals that the fundamental issue lies in the manifold deviation during the sampling process when loss guidance is employed. We theoretically show the existence of manifold deviation by establishing a certain lower bound for the estimation error of the loss guidance. To mitigate this problem, we propose Diffusion with Spherical Gaussian constraint (DSG), drawing inspiration from the concentration phenomenon in high-dimensional Gaussian distributions. DSG effectively constrains the guidance step within the intermediate data manifold through optimization and enables the use of larger guidance steps. Furthermore, we present a closed-form solution for DSG denoising with the Spherical Gaussian constraint. Notably, DSG can seamlessly integrate as a plugin module within existing training-free conditional diffusion methods. Implementing DSG merely involves a few lines of additional code with almost no extra computational overhead, yet it leads to significant performance improvements. Comprehensive experimental results in various conditional generation tasks validate the superiority and adaptability of DSG in terms of both sample quality and time efficiency.

相關內容

Storing intermediate frame segmentations as memory for long-range context modeling, spatial-temporal memory-based methods have recently showcased impressive results in semi-supervised video object segmentation (SVOS). However, these methods face two key limitations: 1) relying on non-local pixel-level matching to read memory, resulting in noisy retrieved features for segmentation; 2) segmenting each object independently without interaction. These shortcomings make the memory-based methods struggle in similar object and multi-object segmentation. To address these issues, we propose a query modulation method, termed QMVOS. This method summarizes object features into dynamic queries and then treats them as dynamic filters for mask prediction, thereby providing high-level descriptions and object-level perception for the model. Efficient and effective multi-object interactions are realized through inter-query attention. Extensive experiments demonstrate that our method can bring significant improvements to the memory-based SVOS method and achieve competitive performance on standard SVOS benchmarks. The code is available at //github.com/zht8506/QMVOS.

Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and test data by adapting a given model w.r.t. any test sample. Although recent TTA has shown promising performance, we still face two key challenges: 1) prior methods perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications; 2) while existing TTA can significantly improve the test performance on out-of-distribution data, they often suffer from severe performance degradation on in-distribution data after TTA (known as forgetting). To this end, we have proposed an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples for test-time entropy minimization. To alleviate forgetting, EATA introduces a Fisher regularizer estimated from test samples to constrain important model parameters from drastic changes. However, in EATA, the adopted entropy loss consistently assigns higher confidence to predictions even for samples that are underlying uncertain, leading to overconfident predictions. To tackle this, we further propose EATA with Calibration (EATA-C) to separately exploit the reducible model uncertainty and the inherent data uncertainty for calibrated TTA. Specifically, we measure the model uncertainty by the divergence between predictions from the full network and its sub-networks, on which we propose a divergence loss to encourage consistent predictions instead of overconfident ones. To further recalibrate prediction confidence, we utilize the disagreement among predicted labels as an indicator of the data uncertainty, and then devise a min-max entropy regularizer to selectively increase and decrease prediction confidence for different samples. Experiments on image classification and semantic segmentation verify the effectiveness of our methods.

Exploring the application of powerful large language models (LLMs) on the named entity recognition (NER) task has drawn much attention recently. This work pushes the performance boundary of zero-shot NER with LLMs by proposing a training-free self-improving framework, which utilizes an unlabeled corpus to stimulate the self-learning ability of LLMs. First, we use the LLM to make predictions on the unlabeled corpus using self-consistency and obtain a self-annotated dataset. Second, we explore various strategies to select reliable annotations to form a reliable self-annotated dataset. Finally, for each test input, we retrieve demonstrations from the reliable self-annotated dataset and perform inference via in-context learning. Experiments on four benchmarks show substantial performance improvements achieved by our framework. Through comprehensive experimental analysis, we find that increasing the size of unlabeled corpus or iterations of self-improving does not guarantee further improvement, but the performance might be boosted via more advanced strategies for reliable annotation selection. Code and data are publicly available at //github.com/Emma1066/Self-Improve-Zero-Shot-NER

A growing trend involves integrating human knowledge into learning frameworks, leveraging subtle human feedback to refine AI models. Despite these advances, no comprehensive theoretical framework describing the specific conditions under which human comparisons improve the traditional supervised fine-tuning process has been developed. To bridge this gap, this paper studies the effective use of human comparisons to address limitations arising from noisy data and high-dimensional models. We propose a two-stage "Supervised Fine Tuning+Human Comparison" (SFT+HC) framework connecting machine learning with human feedback through a probabilistic bisection approach. The two-stage framework first learns low-dimensional representations from noisy-labeled data via an SFT procedure, and then uses human comparisons to improve the model alignment. To examine the efficacy of the alignment phase, we introduce a novel concept termed the "label-noise-to-comparison-accuracy" (LNCA) ratio. This paper theoretically identifies the conditions under which the "SFT+HC" framework outperforms pure SFT approach, leveraging this ratio to highlight the advantage of incorporating human evaluators in reducing sample complexity. We validate that the proposed conditions for the LNCA ratio are met in a case study conducted via an Amazon Mechanical Turk experiment.

Outflow boundaries play an important role in multiphase fluid dynamics simulations that involve transition between liquid and vapor phases. These flows are dominated by low Weber numbers and a sharp jump in pressure, velocity, and temperature. Inadequate treatment of these jumps at the outlet generates undesirable fluid disturbances that propagate upstream and lead to instabilities within the computational domain. To mitigate these disturbances, we introduce a forcing term that can be applied to incompressible Navier-Stokes equations to enforce stability in the numerical solution. The forcing term acts as a damping mechanism to control vortices that are generated by droplet/bubbles in multiphase flows, and is designed to be a general formulation that can be coupled with a fixed pressure outflow boundary condition to simulate a variety of multiphase flow problems. We demonstrate its applicability to simulate pool and flow boiling problems, where bubble-induced vortices during evaporation and condensation present a challenge at the outflow. Validation and verification cases are chosen to quantify accuracy and stability of the proposed method in comparison to established benchmarks and reference solutions, along with detailed performance analysis for three-dimensional simulations on leadership supercomputing platforms. Computational experiments are performed using Flash-X, which is a composable open-source software instrument designed for multiscale fluid dynamics simulations on heterogeneous architectures.

Generative models, widely utilized in various applications, can often struggle with prompts corresponding to partial tokens. This struggle stems from tokenization, where partial tokens fall out of distribution during inference, leading to incorrect or nonsensical outputs. This paper examines a technique to alleviate the tokenization artifact on text completion in generative models, maintaining performance even in regular non-subword cases. The method, termed token alignment, involves backtracking to the last complete tokens and ensuring the model's generation aligns with the prompt. This approach showcases marked improvement across many partial token scenarios, including nuanced cases like space-prefix and partial indentation, with only a minor time increase. The technique and analysis detailed in this paper contribute to the continuous advancement of generative models in handling partial inputs, bearing relevance for applications like code completion and text autocompletion.

Diffusion models have advanced unsupervised anomaly detection by improving the transformation of pathological images into pseudo-healthy equivalents. Nonetheless, standard approaches may compromise critical information during pathology removal, leading to restorations that do not align with unaffected regions in the original scans. Such discrepancies can inadvertently increase false positive rates and reduce specificity, complicating radiological evaluations. This paper introduces Temporal Harmonization for Optimal Restoration (THOR), which refines the de-noising process by integrating implicit guidance through temporal anomaly maps. THOR aims to preserve the integrity of healthy tissue in areas unaffected by pathology. Comparative evaluations show that THOR surpasses existing diffusion-based methods in detecting and segmenting anomalies in brain MRIs and wrist X-rays. Code: //github.com/ci-ber/THOR_DDPM.

AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司