亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Next-generation wireless networks are projected to empower a broad range of Internet-of-things (IoT) applications and services with extreme data rates, posing new challenges in delivering large-scale connectivity at a low cost to current communication paradigms. Rate-splitting multiple access (RSMA) is one of the most spotlight nominees, conceived to address spectrum scarcity while reaching massive connectivity. Meanwhile, symbiotic communication is said to be an inexpensive way to realize future IoT on a large scale. To reach the goal of spectrum efficiency improvement and low energy consumption, we merge these advances by means of introducing a novel paradigm shift, called symbiotic backscatter RSMA, for the next generation. Specifically, we first establish the way to operate the symbiotic system to assist the readers in apprehending the proposed paradigm, then guide detailed design in beamforming weights with four potential gain-control (GC) strategies for enhancing symbiotic communication, and finally provide an information-theoretic framework using a new metric, called symbiotic outage probability (SOP) to characterize the proposed system performance. Through numerical result experiments, we show that the developed framework can accurately predict the actual SOP and the efficacy of the proposed GC strategies in improving the SOP performance.

相關內容

Graph neural networks are typically trained on individual datasets, often requiring highly specialized models and extensive hyperparameter tuning. This dataset-specific approach arises because each graph dataset often has unique node features and diverse connectivity structures, making it difficult to build a generalist model. To address these challenges, we introduce a scalable multi-graph multi-task pretraining approach specifically tailored for node classification tasks across diverse graph datasets from different domains. Our method, Graph Foundation Model (GraphFM), leverages a Perceiver-based encoder that employs learned latent tokens to compress domain-specific features into a common latent space. This approach enhances the model's ability to generalize across different graphs and allows for scaling across diverse data. We demonstrate the efficacy of our approach by training a model on 152 different graph datasets comprising over 7.4 million nodes and 189 million edges, establishing the first set of scaling laws for multi-graph pretraining on datasets spanning many domains (e.g., molecules, citation and product graphs). Our results show that pretraining on a diverse array of real and synthetic graphs improves the model's adaptability and stability, while performing competitively with state-of-the-art specialist models. This work illustrates that multi-graph pretraining can significantly reduce the burden imposed by the current graph training paradigm, unlocking new capabilities for the field of graph neural networks by creating a single generalist model that performs competitively across a wide range of datasets and tasks.

Physics-informed neural networks (PINNs) represent a significant advancement in scientific machine learning by integrating fundamental physical laws into their architecture through loss functions. PINNs have been successfully applied to solve various forward and inverse problems in partial differential equations (PDEs). However, a notable challenge can emerge during the early training stages when solving inverse problems. Specifically, data losses remain high while PDE residual losses are minimized rapidly, thereby exacerbating the imbalance between loss terms and impeding the overall efficiency of PINNs. To address this challenge, this study proposes a novel framework termed data-guided physics-informed neural networks (DG-PINNs). The DG-PINNs framework is structured into two distinct phases: a pre-training phase and a fine-tuning phase. In the pre-training phase, a loss function with only the data loss is minimized in a neural network. In the fine-tuning phase, a composite loss function, which consists of the data loss, PDE residual loss, and, if available, initial and boundary condition losses, is minimized in the same neural network. Notably, the pre-training phase ensures that the data loss is already at a low value before the fine-tuning phase commences. This approach enables the fine-tuning phase to converge to a minimal composite loss function with fewer iterations compared to existing PINNs. To validate the effectiveness, noise-robustness, and efficiency of DG-PINNs, extensive numerical investigations are conducted on inverse problems related to several classical PDEs, including the heat equation, wave equation, Euler--Bernoulli beam equation, and Navier--Stokes equation. The numerical results demonstrate that DG-PINNs can accurately solve these inverse problems and exhibit robustness against noise in training data.

Off-dynamics Reinforcement Learning (ODRL) seeks to transfer a policy from a source environment to a target environment characterized by distinct yet similar dynamics. In this context, traditional RL agents depend excessively on the dynamics of the source environment, resulting in the discovery of policies that excel in this environment but fail to provide reasonable performance in the target one. In the few-shot framework, a limited number of transitions from the target environment are introduced to facilitate a more effective transfer. Addressing this challenge, we propose an innovative approach inspired by recent advancements in Imitation Learning and conservative RL algorithms. The proposed method introduces a penalty to regulate the trajectories generated by the source-trained policy. We evaluate our method across various environments representing diverse off-dynamics conditions, where access to the target environment is extremely limited. These experiments include high-dimensional systems relevant to real-world applications. Across most tested scenarios, our proposed method demonstrates performance improvements compared to existing baselines.

The approximate nearest neighbor search (ANNS) is a fundamental and essential component in data mining and information retrieval, with graph-based methodologies demonstrating superior performance compared to alternative approaches. Extensive research efforts have been dedicated to improving search efficiency by developing various graph-based indices, such as HNSW (Hierarchical Navigable Small World). However, the performance of HNSW and most graph-based indices become unacceptable when faced with a large number of real-time deletions, insertions, and updates. Furthermore, during update operations, HNSW can result in some data points becoming unreachable, a situation we refer to as the `unreachable points phenomenon'. This phenomenon could significantly affect the search accuracy of the graph in certain situations. To address these issues, we present efficient measures to overcome the shortcomings of HNSW, specifically addressing poor performance over long periods of delete and update operations and resolving the issues caused by the unreachable points phenomenon. Our proposed MN-RU algorithm effectively improves update efficiency and suppresses the growth rate of unreachable points, ensuring better overall performance and maintaining the integrity of the graph. Our results demonstrate that our methods outperform existing approaches. Furthermore, since our methods are based on HNSW, they can be easily integrated with existing indices widely used in the industrial field, making them practical for future real-world applications. Code is available at \url{//github.com/xwt1/MN-RU.git}

The upcoming Sixth Generation (6G) mobile communications system envisions supporting a variety of use cases with differing characteristics, e.g., very low to extremely high data rates, diverse latency needs, ultra massive connectivity, sustainable communications, ultra-wide coverage etc. To accommodate these diverse use cases, the 6G system architecture needs to be scalable, modular, and flexible; both in its user plane and the control plane. In this paper, we identify some limitations of the existing Fifth Generation System (5GS) architecture, especially that of its control plane. Further, we propose a novel architecture for the 6G System (6GS) employing Software Defined Networking (SDN) technology to address these limitations of the control plane. The control plane in existing 5GS supports two different categories of functionalities handling end user signalling (e.g., user registration, authentication) and control of user plane functions. We propose to move the end-user signalling functionality out of the mobile network control plane and treat it as user service, i.e., as payload or data. This proposal results in an evolved service-driven architecture for mobile networks bringing increased simplicity, modularity, scalability, flexibility and security to its control plane. The proposed architecture can also support service specific signalling support, if needed, making it better suited for diverse 6GS use cases. To demonstrate the advantages of the proposed architecture, we also compare its performance with the 5GS using a process algebra-based simulation tool.

Beyond 5G and 6G networks are expected to support new and challenging use cases and applications that depend on a certain level of Quality of Service (QoS) to operate smoothly. Predicting the QoS in a timely manner is of high importance, especially for safety-critical applications as in the case of vehicular communications. Although until recent years the QoS prediction has been carried out by centralized Artificial Intelligence (AI) solutions, a number of privacy, computational, and operational concerns have emerged. Alternative solutions have surfaced (e.g. Split Learning, Federated Learning), distributing AI tasks of reduced complexity across nodes, while preserving the privacy of the data. However, new challenges rise when it comes to scalable distributed learning approaches, taking into account the heterogeneous nature of future wireless networks. The current work proposes DISTINQT, a novel multi-headed input privacy-aware distributed learning framework for QoS prediction. Our framework supports multiple heterogeneous nodes, in terms of data types and model architectures, by sharing computations across them. This enables the incorporation of diverse knowledge into a sole learning process that will enhance the robustness and generalization capabilities of the final QoS prediction model. DISTINQT also contributes to data privacy preservation by encoding any raw input data into highly complex, compressed, and irreversible latent representations before any transmission. Evaluation results showcase that DISTINQT achieves a statistically identical performance compared to its centralized version, while also proving the validity of the privacy preserving claims. DISTINQT manages to achieve a reduction in prediction error of up to 65% on average against six state-of-the-art centralized baseline solutions presented in the Tele-Operated Driving use case.

Aiming to achieve ubiquitous global connectivity and target detection on the same platform with improved spectral/energy efficiency and reduced onboard hardware cost, low Earth orbit (LEO) satellite systems capable of simultaneously performing communications and radar have attracted significant attention. Designing such a joint system should address not only the challenges of integrating two functions but also the unique propagation characteristics of the satellites. To overcome severe echo signal path loss due to the high altitude of the satellite, we put forth a bistatic integrated sensing and communication (ISAC) framework with a radar receiver separated from the satellite. For robust and effective interference management, we employ rate-splitting multiple access (RSMA), which splits and encodes users messages into private and common streams. We optimize the dual-functional precoders to maximize the minimum rate among all users while satisfying the Cramer-Rao bound (CRB) constraints. Given the challenge of acquiring instantaneous channel state information (iCSI) for LEO satellites, we exploit the geometrical and statistical characteristics of the satellite channel. To develop an efficient optimization algorithm, semidefinite relaxation (SDR), sequential rank-1 constraint relaxation (SROCR), and successive convex approximation (SCA) are utilized. Numerical results show that the proposed framework efficiently performs both communication and radar, demonstrating superior interference control capabilities. Furthermore, it is validated that the common stream plays three vital roles: i) beamforming towards the radar target, ii) interference management between communications and radar, and iii) interference management among communication users.

Unmanned aerial vehicle (UAV) swarm enabled edge computing is envisioned to be promising in the sixth generation wireless communication networks due to their wide application sensories and flexible deployment. However, most of the existing works focus on edge computing enabled by a single or a small scale UAVs, which are very different from UAV swarm-enabled edge computing. In order to facilitate the practical applications of UAV swarm-enabled edge computing, the state of the art research is presented in this article. The potential applications, architectures and implementation considerations are illustrated. Moreover, the promising enabling technologies for UAV swarm-enabled edge computing are discussed. Furthermore, we outline challenges and open issues in order to shed light on the future research directions.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

北京阿比特科技有限公司