亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an extension of the linear sampling method for solving the sound-soft inverse acoustic scattering problem with randomly distributed point sources. The theoretical justification of our sampling method is based on the Helmholtz--Kirchhoff identity, the cross-correlation between measurements, and the volume and imaginary near-field operators, which we introduce and analyze. Implementations in MATLAB using boundary elements, the SVD, Tikhonov regularization, and Morozov's discrepancy principle are also discussed. We demonstrate the robustness and accuracy of our algorithms with several numerical experiments in two dimensions.

相關內容

Tensor decomposition serves as a powerful primitive in statistics and machine learning. In this paper, we focus on using power iteration to decompose an overcomplete random tensor. Past work studying the properties of tensor power iteration either requires a non-trivial data-independent initialization, or is restricted to the undercomplete regime. Moreover, several papers implicitly suggest that logarithmically many iterations (in terms of the input dimension) are sufficient for the power method to recover one of the tensor components. In this paper, we analyze the dynamics of tensor power iteration from random initialization in the overcomplete regime. Surprisingly, we show that polynomially many steps are necessary for convergence of tensor power iteration to any of the true component, which refutes the previous conjecture. On the other hand, our numerical experiments suggest that tensor power iteration successfully recovers tensor components for a broad range of parameters, despite that it takes at least polynomially many steps to converge. To further complement our empirical evidence, we prove that a popular objective function for tensor decomposition is strictly increasing along the power iteration path. Our proof is based on the Gaussian conditioning technique, which has been applied to analyze the approximate message passing (AMP) algorithm. The major ingredient of our argument is a conditioning lemma that allows us to generalize AMP-type analysis to non-proportional limit and polynomially many iterations of the power method.

To explore the limits of a stochastic gradient method, it may be useful to consider an example consisting of an infinite number of quadratic functions. In this context, it is appropriate to determine the expected value and the covariance matrix of the stochastic noise, i.e. the difference of the true gradient and the approximated gradient generated from a finite sample. When specifying the covariance matrix, the expected value of a quadratic form QBQ is needed, where Q is a Wishart distributed random matrix and B is an arbitrary fixed symmetric matrix. After deriving an expression for E(QBQ) and considering some special cases, a numerical example is used to show how these results can support the comparison of two stochastic methods.

Towards identifying the number of minimal surfaces sharing the same boundary from the geometry of the boundary, we propose a numerical scheme with high speed and high accuracy. Our numerical scheme is based on the method of fundamental solutions. We establish the convergence analysis for Dirichlet energy and $L^\infty$-error analysis for mean curvature. Each of the approximate solutions in our scheme is a smooth surface, which is a significant difference from previous studies that required mesh division.

Independent component analysis (ICA) is a blind source separation method to recover source signals of interest from their mixtures. Most existing ICA procedures assume independent sampling. Second-order-statistics-based source separation methods have been developed based on parametric time series models for the mixtures from the autocorrelated sources. However, the second-order-statistics-based methods cannot separate the sources accurately when the sources have temporal autocorrelations with mixed spectra. To address this issue, we propose a new ICA method by estimating spectral density functions and line spectra of the source signals using cubic splines and indicator functions, respectively. The mixed spectra and the mixing matrix are estimated by maximizing the Whittle likelihood function. We illustrate the performance of the proposed method through simulation experiments and an EEG data application. The numerical results indicate that our approach outperforms existing ICA methods, including SOBI algorithms. In addition, we investigate the asymptotic behavior of the proposed method.

In this article we present a numerical analysis for a third-order differential equation with non-periodic boundary conditions and time-dependent coefficients, namely, the linear Korteweg-de Vries Burgers equation. This numerical analysis is motived due to the dispersive and dissipative phenomena that government this kind of equations. This work builds on previous methods for dispersive equations with constant coefficients, expanding the field to include a new class of equations which until now have eluded the time-evolving parameters. More precisely, throughout the Legendre-Petrov-Galerkin method we prove stability and convergence results of the approximation in appropriate weighted Sobolev spaces. These results allow to show the role and trade off of these temporal parameters into the model. Afterwards, we numerically investigate the dispersion-dissipation relation for several profiles, further provide insights into the implementation method, which allow to exhibit the accuracy and efficiency of our numerical algorithms.

The anisotropic diffusion equation is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and its interplay with the ambient magnetic field. This diffusion term contributes to the highly stiff nature of the CR transport equation. In order to conduct numerical simulations of time-dependent cosmic ray transport, implicit integrators have been traditionally favoured over the CFL-bound explicit integrators in order to be able to take large step sizes. We propose exponential methods that directly compute the exponential of the matrix to solve the linear anisotropic diffusion equation. These methods allow us to take even larger step sizes; in certain cases, we are able to choose a step size as large as the simulation time, i.e., only one time step. This can substantially speed-up the simulations whilst generating highly accurate solutions (l2 error $\leq 10^{-10}$). Additionally, we test an approach based on extracting a constant diffusion coefficient from the anisotropic diffusion equation, where the constant coefficient term is solved implicitly or exponentially and the remainder is treated using some explicit method. We find that this approach, for homogeneous linear problems, is unable to improve on the exponential-based methods that directly evaluate the matrix exponential.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司